Neutrinos from Galactic Microquasars

Phys. Rev. D 90, 123010 (2014)

Luiz H.M. da Silva University of Wisconsin - Milwaukee

Outline

- Motivation
- The case of LS 5039
- The μQSO population in the Milky Way
- v's from Galactic µQSOs
- Conclusions

Motivation

- The IceCube Collaboration has quite recently reported the discovery of extraterrestrial neutrinos, including three events with well-measured energies around 1PeV(Phys. Rev. Lett. 111, 021103 (2013); Science 342, 1242856 (2013); Phys. Rev. Lett. 113, 101101 (2014))
- Many candidates for sources; Galactic origin of events not ruled out yet.
- By looking at μ QSOs, we may find a significant contribution to the diffuse flux observed.
- Strategy: using a well known µQSO to typify the population across the Milky Way, look at how those sources are distributed and obtain the total neutrino flux.

The case of LS 5039

- TeV neutrinos are produced in pp or pγ interactions through the decay of secondary charged pions
- TeV γ rays are generally produced in a comparable rate
- Powerful γ ray emitters are natural candidates for good neutrino sources

IPA 2015

- HMXB, non-thermal emission from radio to high-energy (HE), above 100 MeV, and very-high energy (VHE), above 100 GeV, γ rays
- + L ~ 10³⁵ erg s⁻¹ for KeV < Eγ <TeV
- Compact object of unknown nature (most likely black hole) with mass between 1.4 and 5 solar masses
- Located at 2.9±0.8 Kpc from Earth

- Simultaneous production of gamma rays and neutrinos requires a good proton accelerator and good converter (target); jet is the most likely site for this.
- If γ 's and v's are simultaneously produced,

 $\phi_{\nu} = \zeta E_{\nu}^{-2} \ [GeV^{-1}cm^{-2}s^{-1}]$

 $1.8 \times 10^{-9} < \zeta < 1.6 \times 10^{-8}$

 For a source 3 Kpc away, we get an integrated luminosity per decade of energy

$$L_{\nu}^{LS \ 5039} = 4\pi d^2 \int_{E_1}^{E_2} E_{\nu} \phi(E_{\nu}) dE_{\nu} = 4\pi \left(\frac{d}{cm}\right)^2 \zeta ln 10 \ [GeV s^{-1}]$$

The µQSO population in the Milky Way

- Most recent catalogues show 114 HMXBs and about 130 LMXBs (Astron.Astrophys-455,1165(2006), Astron.Astrophys-469,807(2007))
- The INTEGRAL/IBIS galactic plane survey contains 82 high mass and 108 low mass sources.
 (Astron. Astrophys. 545, A27 (2012))
- The number of X- ray binaries in the Galaxy brighter than 2 x10³⁴ erg s⁻¹ is thought to comprise 325 HMXBs and 380 LMXBs (up to a factor of two)

- One system is of particular interest for us, LS I+ 61 303. It is a source similar to LS 5039, periodically monitored by AMANDA and IceCube (*Phys. Rev. D, 077102(2005), Phys. Rev. D 79, 062001(2009)*)
- The most recent analysis leads to a 90% C.L. upper limit on the neutrino flux at the level (ArXiv:1406.6757)

$$E_{\nu}^{2}\Phi_{90}(E_{\nu}) = 1.95 \times 10^{-9} \ [GeV cm^{-2}s^{-1}]$$

• To consider LS 5039 as a standard neutrino source of the μ QSO population the γ 's and v's should be produced well above the jet, without γ ray absorption

•
$$L_v \approx 10^{33} \text{erg s}^{-1}$$
 (conservative approach)

IPA 2015

Classification	Name	Position (J2000.0)	Distance (kpc)	$L_{\rm jet}~({\rm erg/s})$
HMXB	LS I + 61 303	$(02^{h}40^{m}31.70^{s}, +61^{\circ}13'45.6'')$	2	5.69×10^{36}
HMXB	CI Cam	$(04^{h}19^{m}42.20^{s}, +55^{\circ}59'58.0'')$	1	5.66×10^{37}
LMXB	GRO J0422 + 32	$(04^{h}21^{m}42.70^{s}, +32^{\circ}54'27.0'')$	3	4.35×10^{37}
LMXB	XTE J1118 + 480	$(11^{h}18^{m}10.79^{s}, +48^{\circ}02'12.3'')$	1.9	3.49×10^{37}
LMXB	GS 1354-64	$(13^{h}58^{m}09.70^{s}, -64^{\circ}44'05.0'')$	10	3.62×10^{37}
LMXB	Circinus X-1	$(15^{h}20^{m}40.84^{s}, -57^{\circ}10'00.5'')$	10	$7.61 imes 10^{38}$
LMXB	XTE J1550-564	$(15^{h}50^{m}58.67^{s}, -56^{\circ}28'35.3'')$	2.5	2.01×10^{38}
LMXB	Scorpius X-1	$(16^{h}19^{m}55.09^{s}, -15^{\circ}38'24.9'')$	2.8	$1.04 imes 10^{38}$
LMXB	GRO J1655-40	$(16^{h}54^{m}00.16^{s}, -39^{\circ}50'44.7'')$	3.1	$1.6 imes10^{40}$
LMXB	GX 339-4	$(17^{h}02^{m}49.40^{s}, -48^{\circ}47'23.3'')$	8	3.86×10^{38}
LMXB	1E 1740.7-2942	$(17^{h}43^{m}54.82^{s}, -29^{\circ}44'42.8'')$	8.5	$10^{36} - 10^{37}$
LMXB	XTE J1748-288	$(17^{h}48^{m}05.06^{s}, -28^{\circ}28'25.8'')$	8	$1.84 imes 10^{39}$
LMXB	GRS 1758-258	$(18^{h}01^{m}12.40^{s}, -25^{\circ}44'36.1'')$	8.5	$10^{36} - 10^{37}$
HMXB	V4641 Sgr	$(18^{h}19^{m}21.63^{s}, -25^{\circ}24'25.9'')$	9.6	$1.17 imes10^{40}$
HMXB	LS 5039	$(18^{h}26^{m}15.06^{s}, -14^{\circ}50'54.3'')$	2.9	$8.73 imes 10^{36}$
HMXB	SS 433	$(19^{h}11^{m}49.57^{s}, +04^{\circ}58'57.8'')$	4.8	1.00×10^{39}
LMXB	GRS 1915+105	$(19^{h}15^{m}11.55^{s}, +10^{\circ}56'44.8'')$	12.5	$2.45 imes 10^{40}$
HMXB	Cygnus X-1	$(19^{h}58^{m}21.68^{s}, +35^{\circ}12'05.8'')$	2.1	$10^{36} - 10^{37}$
HMXB	Cygnus X-3	$(20^{h}32^{m}25.77^{s}, +40^{\circ}57'28.0'')$	10	$1.17 imes10^{39}$

Astrophys. J. 575, 378 (2002), R. Astron. Soc. 351, 791 (2004), Astron. Astrophys. 457, 1011 (2006), arXiv:1103.3009

v's from Galactic µQSOs

- We model our Galaxy as a cylinder of radius Rg = 15 Kpc and thickness 1 Kpc
- The integrated energy weighted total neutrino flux from the isotropic Galactic source distribution with normal incidence at O is

$$4\pi \int_{E_1}^{E_2} E_{\nu} \Phi(E_{\nu}) dE_{\nu} = \frac{1}{4\pi} \sum_{i} \frac{L_{\nu,i}}{r_i^2}$$
$$= \frac{1}{4\pi} \sum_{i} \frac{L_{\nu,i}}{R^2 + 2Rr' \cos(\theta) + r'^2}$$

r'i: position of source h=exclusion radius RG=Galactic radius,15 kpc R=position of Earth, 8.3 kpc

IPA 2015

- Assuming equal power for all sources (equal to the power of LS 5039), we write, with $\sigma(r')$ as the source number density,

$$4\pi \int_{E_1}^{E_2} E_{\nu} \Phi_{\nu} dE_{\nu} = \frac{L_{\nu}^{LS \ 5039}}{4\pi} \int \int \frac{\sigma(r')r'dr'd\theta}{R^2 + 2Rr'\cos(\theta) + r'^2} \equiv \frac{L_{\nu}^{LS \ 5039}}{4\pi} \mathcal{I}$$

• With the energy ranging from 100 TeV to 1 PeV, we obtain,

$$E_{\nu}^{2}\Phi_{\nu} = \frac{L_{\nu}^{LS \ 5039}}{16\pi^{2}ln10}\mathcal{I} \approx 1.27 \times 10^{-19} \ \left(\frac{\mathcal{I}}{kpc^{2}}\right) [GeV \ cm^{-2} \ s^{-1} \ sr^{-1}]$$

The IceCube collaboration reports (assuming isotropic sources and democratic flavor ratios)
(Science 342, 1242856 (2013))

$$\Phi_{\nu} = 1.5 \times 10^{-8} \left(\frac{E_{\nu}}{100 \ TeV}\right)^{-2.15 \pm 0.15} [GeV \ cm^{-2} \ s^{-1} \ sr^{-1}]$$

The integral \mathcal{I} is carried out numerically. Assuming a source density • distribution of the following form, with Ro = 4 Kpc: (Mon. Not. R. Astron. Soc. 294, 429 (1998))

Only lower bound on µQSO considered •

$\sigma = \left(r' \right) = N_{e} \operatorname{cmp} \left(\begin{array}{cc} R_0 & r' \end{array} \right)$	Table : Results of integration		
$\delta_{\mu QSO}(r) = N_0 exp \left(-\frac{1}{r'} - \frac{1}{R_0} \right)$	h (kpc)	${\mathcal I}$	$N_{\mu QSO}$
	1	0.0273 N	433
0.12	2	0.0193 N	612
	3	0.0143 N	809
0.06	4	0.0113 N	1045
0.04	5	0.0088 N	1342
$0.02 \begin{bmatrix} & & & & & & & & & & & & & & & & & & $			

Conclusions

- We have revisited µQSOs as potential neutrino sources
- LS 5039 can be used as a model, with neutrino production most likely happening and the end of the jets
- By looking at the µQSO population on the Milky Way, we see that those objects could give a significant contribution to the diffuse neutrino flux observed by IceCube
- Waiting for future observations!