

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Cosmology Overview

"Area" = (Highest E/Lowest E)X(Largest D/Smallest D) = 10⁵⁰

At early times, electroweak reactions were frequent enough to keep neutrinos in equilibrium with the rest of the cosmic plasma

Fermi-Dirac distribution with temperature *T* equal to the electron/photon temperature.

After the neutrinos decoupled from the rest of the plasma (*kT*<MeV), they still maintained Fermi-Dirac distribution with *T* falling as the Universe expanded

🚰 Fermilab

Calibrate off the well-known photon temperature

$$n_{vv} = 115N_v cm^{-3}$$
Number of species of weakly interacting neutrinos (3)

There are ~ a hundred quadrillion cosmic neutrinos (flux of $115x3c = 10^{13} \text{ cm}^{-2} \text{ sec}^{-1}$) passing through this screen (~10⁴ cm²) every second.

Sterile Neutrinos produced in the early universe via oscillations

$$Rate = \frac{1}{2}\sin^2(2\overline{\theta}_s)\Gamma_{weak}$$

where the mixing angle needs to be computed in matter

Production peaks at ~100 MeV and can completely thermalize the state so that $N_v \rightarrow 4$

Neutrinos leave a subtle imprint on the sky

Cosmic Microwave Background: Picture of the Universe when it was 380,000 years old

Acoustic Oscillations

- At these early times, electrons, protons, and photons were tightly coupled, acted as single fluid
- Subject to restoring force: overdense regions become underdense as photons stream out → acoustic oscillations

Acoustic Oscillations and Damping

- At these early times, electrons, protons, and photons were tightly coupled, acted as single fluid
- Subject to restoring force: overdense regions become underdense as photons stream out → acoustic oscillations
- On small scales, photons can random walk and suppress perturbations → damping

Acoustic Oscillations and Damping

- At these early times, electrons, protons, and photons were tightly coupled, acted as single fluid
- Subject to restoring force: overdense regions become underdense as photons stream out → acoustic oscillations
- On small scales, photons can random walk and suppress perturbations → damping

Spectrum of Musical Note

Power Spectrum of CMB: Acoustic Oscillations and Damping

Ratio of Acoustic Scale to Damping scale

 $\lambda_{acoustic} \sim c_{sound} t \propto t$

Ratio of Acoustic Scale to Damping scale

 $\lambda_{acoustic} \sim c_{sound} t \propto t$

The ratio of the damping scale to the acoustic scale:

$$\frac{\lambda_{acoustic}}{\lambda_{damping}} \propto t_{rec}^{1/2}$$

$$\lambda_D \sim \lambda_{MFP} \sqrt{N_{scatters}} \sim \lambda_{MFP} \sqrt{\frac{ct}{\lambda_{MFP}}} \propto t^{1/2}$$

Neutrinos contribute to energy density of the early Universe

- Einstein's equations

 Expansion Rate
 proportional to energy
 density
- Age of the universe at given Temperature is higher if expansion rate is slower (e.g., if neutrinos did not contribute to the energy budget)

More neutrinos \rightarrow More Damping \rightarrow Less power on small scales

CMB Anisotropies measured for over 20 years

Sky Coverage

‡ Fermilab

Example: Planck High Frequency Instrument

(Simplified) Model for the time-ordered data:

$$d_t = A_{tp}T_p + n_t$$

Pointing matrix Temperature in pixel *p* Time-stream noise, with mean zero and variance *N*

Minimum variance estimator for map:

$$\mathbf{T}_p = \left(\mathbf{A}^T \mathbf{N}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{N}^{-1} \mathbf{d}_{\perp}$$

(Indirect) Detection of Cosmic Neutrino Background!

Light sterile neutrinos Disfavored

UNIFORM TO ONE PART IN 10,000 This evolution was driven by gravity: over-dense regions became more over-dense, eventually forming galaxies and stars

VERY NON-UNIFORM

Neutrinos have large thermal velocities so do not cluster on small scales. This non-clustering component inhibits the formation of small scale structure.

Massless Neutrinos

Massive Neutrinos

Neutrinos Inhibit Small Scale Structure

We quantify this with the power spectrum, or the dimensionless $k^{3}P(k)$.

Probes of Structure 1103.5083

Probe	Current $\sum m_{\nu}$ (eV)	Forecast $\sum m_{\nu}$ (eV)	Key Systematics	Current Surveys	Future Surveys
CMB Primordial	1.3	0.6	Recombination	WMAP, Planck	None
CMB Primordial + Distance	0.58	0.35	Distance measure- ments	WMAP, Planck	None
Lensing of CMB	∞	0.2 - 0.05	NG of Secondary anisotropies	Planck, ACT [39], SPT [96]	EBEX [57], ACTPol, SPTPol, POLAR- BEAR [5], CMBPol [6]
Galaxy Distribution	0.6	0.1	Nonlinearities, Bias	SDSS [58, 59], BOSS [82]	DES [84], BigBOSS [81], DESpec [85], LSST [92], Subaru PFS [97], HET- DEX [35]
Lensing of Galaxies	0.6	0.07	Baryons, NL, Photo- metric redshifts	CFHT-LS [23], COS- MOS [50]	DES [84], Hy- per SuprimeCam, LSST [92], Euclid [88], WFIRST[100]
Lyman α	0.2	0.1	Bias, Metals, QSO continuum	SDSS, BOSS, Keck	BigBOSS[81], TMT[99], GMT[89]
21 cm	∞	0.1 - 0.006	Foregrounds, Astro- physical modeling	GBT [11], LOFAR [91], PAPER [53], GMRT [86]	MWA [93], SKA [95], FFTT [49]
Galaxy Clusters	0.3	0.1	Mass Function, Mass Calibration	SDSS, SPT, ACT, XMM [101] Chan- dra [83]	DES, eRosita [87], LSST

Example: CMASS ("Constant Mass") galaxies from Baryon Acoustic Spectroscopic Survey (BOSS)

🛟 Fermilab

Example: CMASS galaxies from BOSS

 Pixelize the survey and, for each pixel, compute the over-density Δ=(n-n^{exp})/n^{exp}, where n^{exp} is the expected number of galaxies in the pixel

Example: CMASS galaxies from BOSS

- Pixelize the survey and, for each pixel, compute the over-density Δ=(n-n^{exp})/n^{exp}, where n^{exp} is the expected number of galaxies in the pixel
- Form a quadratic estimator

$$\hat{P}(k) = \sum_{ij} \Delta_i \Delta_j M_{ij}(k)$$

A simple guess might be $M_{ij}(k) = e^{i\vec{k}\cdot(\vec{x}_i-\vec{x}_j)}$ but there are many other options, many of which account for masks, edge effects more carefully and have better noise properties

Example: CMASS galaxies from BOSS

Final Constraints insensitive to theory systematics

This analysis (and recent Planck + other experiments) get

$$\sum m_{v} < 0.2 \, eV$$

Probes of Structure

Probe	Current $\sum m_{\nu}$ (eV)	Forecast $\sum m_{\nu}$ (eV)	Key Systematics	Current Surveys	Future Surveys
CMB Primordial	1.3	0.6	Recombination	WMAP, Planck	None
CMB Primordial + Distance	0.58	0.35	Distance measure- ments	WMAP, Planck	None
Lensing of CMB	∞	0.2 - 0.05 0.016	NG of Secondary anisotropies	Planck, ACT [39], SPT [96]	EBEX [57] ACTEN CMB S4 (+DESI BAO)
Galaxy Distribution	0.6	0.1 0.017	Nonlinearities, Bias	SDSS [58, 59], BOSS [82]	DES [84], BigBOSS [81], DESI (+Planck) DEX [35]
Lensing of Galaxies	0.6	0.07 0.023	Baryons, NL, Photo- metric redshifts	CFHT-LS [23], COS- MOS [50]	DES [84]. Hv- LSST (+Planck) WFIRST[100]
Lyman α	0.2	0.1	Bias, Metals, QSO continuum	SDSS, BOSS, Keck	BigBOSS[81], TMT[99], GMT[89]
21 cm	∞	0.1 - 0.006	Foregrounds, Astro- physical modeling	GBT [11], LOFAR [91], PAPER [53], GMRT [86]	MWA [93], SKA [95], FFTT [49]
Galaxy Clusters	0.3	0.1	Mass Function, Mass Calibration	SDSS, SPT, ACT, XMM [101] Chan- dra [83]	DES, eRosita [87], LSST

Surveys over the next decade will measure neutrino masses

Complementarity with neutrinoless double beta decay

Neutrinos raise doubts about this iconic "setin-stone" chart

Simple 3-Neutrino Paradigm explains everything, but every time we think we've understood neutrinos, we've been wrong

Exciting "Large Area" Program to test 3-Neutrino Paradigm

 At the simplest level, keV sterile neutrinos could be the Dark Matter

Neutrinos raise doubts about this iconic "set-in-stone" chart

- At the simplest level, keV sterile neutrinos could be the Dark Matter
- More importantly, we have learned from neutrinos that when we think we know everything, we don't

Neutrinos raise doubts about this iconic "set-in-stone" chart

Neutrinos raise doubts about this iconic "set-in-stone" chart

- At the simplest level, keV sterile neutrinos could be the Dark Matter
- More importantly, we have learned from neutrinos that when we think we know everything, we don't
- We think we have a simple cosmological model that fits everything. Maybe we don't ... and a neutrino discovery will lead the way to a better understanding of the evolution of the universe

Recent hints for X-ray excess

Stacked signal from many galaxy clusters

And from Andromeda

Recent hints for X-ray excess

If interpreted as sterile neutrino decay, mixing angle is too small for them to be produced enough in the early universe in the standard scenario, but alternatives abound: resonances, etc.

More importantly, no signal seen in other areas

7-keV vs. r=0.1 vs. Galactic Center DM?

Planck constraints on sterile massive neutrinos

Covariance Matrix and Window Function

• Estimate covariance matrix by running 600 mocks

$$C(k,k') = \frac{1}{N_{sim}} \sum_{all \ sims \ i} \left(P_i(k) - \overline{P}(k) \right) \left(P_i(k') - \overline{P}(k') \right)$$

Covariance Matrix and Window Function

• Estimate covariance matrix by running 600 mocks

$$C(k,k') = \frac{1}{N_{sim}} \sum_{all \ sims \ i} \left(P_i(k) - \overline{P}(k) \right) \left(P_i(k') - \overline{P}(k') \right)$$

 The power spectrum estimate is sensitive to a range of P(k); W follows from M

$$\left\langle \hat{P}(k) \right\rangle = \int dk' W(k,k') P(k')$$

Power Spectrum, Covariance Matrix, & Window Function

Zhao et al 2013

