Origin of the ankle in the UHECR spectrum and extragalactic protons below it

Michael Unger, Glennys Farrar, and Luis Anchordoqui

Center for Cosmology and Particle Physics, New York University Department of Physics and Astronomy Lehman College, City University of New York

> IceCube Particle Astrophysics Symposium Cosmic Neutrinos: What's Next? May 5, 2015

L. A. Anchordoqui (CUNY)

Table of Contents

2 Simple explanation for shape of UHECR spectrum

3 Comparison with experimental data

4 Multimessenger astrophysics: ν 's and γ 's

5 Conclusions

High energy end of CR spectrum

L. A. Anchordoqui (CUNY)

UHECR conundrum

- Ankle shape readily produced by superposition of two power-laws Natural candidate: transition between GCRs and EGCRs
 - Original models retransition from Galactic ⁵⁶Fe to EG protons

- Recent models
 transition from G ⁵⁶Fe to EG heavies (Allard-Olinto-Parizot, 2007)
- 2 Ankle feature also naturally arises as dip in spectrum from e^+e^- energy loss of EG protons propagating in CMB (Berezinsky-Gazizov-Grigorieva, 2002)
- Auger data relight but EG component near and below ankle + intermediate composition above (Auger Collaboration, 2014)

Recent models I fit Auger spectrum and composition at price of adding an *ad hoc* light EG component below ankle with a steep injection spectrum $\propto E^{-2.7}$

(Gaisser-Stanev-Tilav, 2013; Aloisio-Berezinsky-Blasi, 2014)

Example of 4 (Aloisio-Berezinsky-Blasi, 2014)

Photo-nuclear interactions during acceleration

Example (Fang-Kotera-Olinto, 2012-2014)

Newly-born pulsars embedded in core-collapse supernovae

- initial rotational velocity: $\Omega_i = 10^3$, 10^4 s^{-1}
- magnetic dipole moment: $\mu = 10^{30}$, $10^{31.5}$ cgs
- need GCR population (solid lines) to fill-in spectrum below ankle

New idea: photodisintegration after acceleration

Example that doesn't create ankle (Globus+,2014)

(Globus-Allard-Mochkovitch-Parizot, 2014)

L. A. Anchordoqui (CUNY)

Our model: Photodisintegration in medium outside the accelerator

- injection spectrum $\propto E^{-\gamma}$
- mass of injected nuclei: A
- UHECR power density: ċ

- source evolution with *z* ☞ SFR
- interaction/escape time: t_{int}/t_{esc}
- maximum energy: $E_{\rm p}^{\rm max}$

Impact of source environment depends on photon field

L. A. Anchordoqui (CUNY)

Example fit: broken power law

• Assuming
$$\gamma = 1$$
, Kneiske10

$$\log(E_p^{\max}/\mathrm{eV}) = 18.6$$

• Assuming $\gamma = 1$, Kneiske04

$$\log(E_p^{\rm max}/{\rm eV}) = 18.5$$

•
$$A = 28$$

tail of GCRs (dashed line)

Example fit: greybody

• Assuming
$$\gamma = 1$$
, Kneiske10

$$\log(E_p^{\max}/\mathrm{eV}) = 18.6$$

Assuming $\gamma = 1$, Kneiske04

•
$$\log(E_p^{\text{max}}/\text{eV}) = 18.5$$

• $A = 27$

tail of GCRs (dashed line)

L. A. Anchordoqui (CUNY)

Systematic sensitivity (spectrum $1\sigma \uparrow$ and $\langle X_{\text{max}} \rangle 1\sigma \downarrow$)

Distinctive ν signal \bowtie broken power law (left) and greybody (right)

L. A. Anchordoqui (CUNY)

EM cascades from γ -rays

Cosmogenic neutrinos safely below upper limit set by Fermi-LAT flux

(Ahlers+,2010)

γ's from nucleus de-exitation
 regligible contribution to EM cascades
 (Anchordoqui, 2015)

Take home message

- Ankle and light extragalactic CRs below it, can be explained by photodisintegration of UHECRs in region surrounding accelerator
 - Auger composition and spectrum explained within systematics
- Astrophysical realizations being studied stay tuned to arXiv...