The physics program and experimental status of NOvA

Ryan Patterson Caltech

IceCube Particle Astrophysics Symposium 2015 Madison, Wisconsin

May 6, 2015

ΝΟνΑ

A broad physics scope

Using $\nu_{\mu} \rightarrow \nu_{e}$, $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$...

- Determine the v mass hierarchy
- Determine the θ_{23} octant
- Constrain δ_{CP}

Using $\nu_{\mu} \rightarrow \nu_{\mu}$, $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$...

- Atmospheric parameters: precision measurements of θ_{23} , Δm_{32}^2 . (Exclude $\theta_{23} = \pi/4$?)
- Over-constrain the atmos. sector (*four oscillation channels*)

Also ...

- Neutrino cross sections at the NOvA Near Detector
- Sterile neutrinos
- Supernova neutrinos
- Non-standard interactions
- Searches for monopoles and other exotica

Ryan Patterson, Caltech

NOVA Far Detector (Ash River, MN) MINOS Far Detector (Soudan, MN)

Wisconsin

Lake Michigan

Milwaukee

Fermilab

Chicago

ΝΟνΑ

A broad physics scope

Using $\nu_{\mu} \rightarrow \nu_{e}$, $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$...

- Determine the v mass hierarchy
- Determine the θ_{23} octant
- Constrain δ_{CP}

Using $\nu_{\mu} \rightarrow \nu_{\mu}$, $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$...

- Atmospheric parameters: precision measurements of θ_{23} , Δm_{32}^2 . (Exclude $\theta_{23} = \pi/4$?)
- Over-constrain the atmos. sector (*four oscillation channels*)

Also ...

- Neutrino cross sections at the NOvA Near Detector
- Sterile neutrinos
- Supernova neutrinos
- Non-standard interactions
- Searches for monopoles and other exotica

Ryan Patterson, Caltech

NOvA Far Detector (Ash River, MN)

MINOS Far Detector (Soudan, MN)

Fermilab Neutrino Complex

NuMI = Neutrinos from the Main Injector

2005 – 2012: MINOS "low energy" run

2012 – 2013: Long shutdown

- Repurpose Recycler for injection
- Add associated kickers and instrumentation
- RF, power supply upgrades
- Overhaul of NuMI target station
 → All toward 700 kW operation

Today: NOvA "medium energy" run

Slip-stacking into Recycler now standard

~420 kW operation now standard. (*Record so far: 474 kW*)

Booster RF upgrades still underway for full 700 kW operation.

NOvA detectors

Extruded PVC cells filled with 11M liters of scintillator instrumented with λ-shifting fiber and APDs

Near Detector

Far detector: 14-kton, fine-grained,

low-Z, highly-active tracking calorimeter → 344,000 channels

Near detector:

0.3-kton version of the same → 18,000 channels

Ryan Patterson, Caltech

15.6 m

 $4 \text{ cm} \times 6 \text{ cm}$

<u>A NOvA cell</u>

To APD

Events in NOvA

Superb spatial granularity for a detector of this scale

 $X_0 = 38$ cm (6 cell depths, 10 cell widths)

Ryan Patterson, Caltech

IPA, May 6, 2015

Long baseline \rightarrow hierarchy sensitivity, along with rest of oscillation reach

Example point in v parameter space

Simultaneously break ν_3 flavor degeneracy (θ_{23} octant), determine mass hierarchy, and constrain CP phase δ .

And a "degenerate" point...

Hierarchy and δ information now correlated. Octant preference still established.

$$\nu_{\mu} \rightarrow \nu_{\mu}$$
 and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$

Below: Oscillated and non-oscillated spectra (reconstructed energy) for ν_μ CC QE candidates 6% (non-QE) vs. 4.5% (QE) energy resolution using current techniques.

• <u>**Right:**</u> example contours at two test points

Outside of 3-flavor oscillation physics... _{0.10}

- Non-standard interactions (plot at right) Long baseline → new sensitivity; appearance-mode couplings largely unconstrained.
- Neutrino/antineutrino comparisons
- Cross sections

 $\sim 10^8$ events in full exposure in the ND. ND analyses underway.

- Monopole searches (plot at left) Look for strong ionization signal
- Supernova neutrinos
 Several thousand event

Several thousand events in NOvA for a supernova in our galaxy. (Some DAQ development still on-going for this.)

Isolating individual interactions

- A standard trigger in the Far Detector (FD) records 550 μ s of activity:
 - hundreds of noise hits (since we keep the DAQ thresholds as low as possible)
 - about 50 cosmic rays
 - and rarely, a *neutrino interaction*
- Look for causally connected clusters in space/time

Isolating individual interactions

- A standard trigger in the Far Detector (FD) records 550 μ s of activity:
 - hundreds of noise hits (since we keep the DAQ thresholds as low as possible)
 - about 50 cosmic rays
 - and rarely, a *neutrino interaction*
- Look for causally connected clusters in space/time

Isolating individual interactions

Ryan Patterson, Caltech

IPA, May 6, 2015

Ryan Patterson, Caltech

Event reconstruction

Vertexing (11 cm resolution for charged-current events)

2400

2600

Clustering and view maching

Tracking (Kalman filter algorithm shown)

on **y** (cm) 0 -1001400 1600 1800 2000 2200 23 Ryan Patterson, Caltech

300

200

IPA, May 6, 2015

3200

z (cm)

Simulated FD v_{μ} CC event

3000

2800

- Top plot: **FD neutrino peak** A basic monitoring event selection used
- Bottom plot: ND neutrino peak No event selection at all! Spill structure visible with minimal data.
- Beam timing gives us a 10⁵ head start on cosmic ray rejection in the Far Detector (10 µs spill every 1.3 s)

40M-to-1 cosmic rejection demonstrated with FD data

Above: penetration of neutrons into the top of the detector (largely removed by p_T/p cut)

 ν_{μ} CC case: Cut events...

- ...whose tracks project too near to the detector edges

- ...with cosmic-like muon directions

For nominal 1-yr exposure, expect:

75 signal 4 beam bkg. ~1 cosmic bkg. (after disappearance)

20M-to-1 cosmic rejection demonstrated with FD data

In the ND...

- Cosmic ray rate much reduced (50 Hz in ND vs. 100,000 Hz in FD)
- ND event pile-up easily handled given temporal and spatial resolution of detector

Events in the ND

Ryan Patterson, Caltech

IPA, May 6, 2015

NOvA Preliminary

— Data

Events in the ND

Right: π^0 sample

Below: two ν_e CC event classifiers

LID: Shower reconstruction likelihoods LEM: Library event matching

60

EM shower sample in the Far Detector

- As one check of EM shower modeling and PID performance, isolate cosmic ray bremsstrahlung showers by removing the parent muon hits
- Data / MC agreement is excellent
- Primary v_e CC PID distributions shown below

PID distributions from FD data EM showers and equivalent MC

Summary and Outlook

- Taking physics data with full Near and Far Detectors!
- Since final commissioning and outfitting, operations have been smooth!
- 420 kW NuMI power now. Next major step after summer shutdown.
- Surface operation: cosmic ray rejection demonstrated with FD data
- Calibration, reconstruction, particle ID, fitting tools built
- Current analysis frontiers: tuning of simulations and algorithms based on all this new data; assessment of systematic uncertainties; ramp-up of non-oscillation physics analysis; collecting protons-on-target!

First oscillation results soon!

With small data set: only 5% of full planned exposure.

