Wright Laboratory WISCONSIN ICECUBE PARTICLE ASTROPHYSICS CENTER

DM-Ice: Prototype Performance and Full Scale Outlook

Zachary Pierpoint for the DM-Ice Collaboration IPA, May 5, 2015

DM-Ice

Goal: Unambiguously test DAMA's claim of dark matter detection.

DM-lce17

Detector Performance and Stability

DM-Ice17 Attributes

- Two 8.47 kg test crystals
- Deployed at the south pole in December 2010.
- 2200 m.w.e. overburden
- Essentially continuous (>99% uptime) physics data taking for 3.5 years
- Temperature stable to <0.3° C over the entire run
- Muon coincidence with IceCube
 - See Antonia's talk next

DM-lce17 Calibration

- Calibration performed via internal contamination lines.
- Short lived isotopes decay away providing a strong verification of this calibration.

• We observe a small light loss, but this is corrected for with a time dependent energy calibration.

DM-lce17 Calibration

- A general decreasing trend in apparent gain of ~2% over the 3.5 years is evident at all energies.
- At the highest energies, it appears that there are two different time constants involved.

1.02_П

1.01

0.98

0.97

0.96

0.95

46 keV

Relative Net Gain

Background Model

- Detector response and behavior are well predicted by the background model (from radio assay and Geant4).
- We are working on incorporating time dependent contamination rates accounting for short lived isotopes.

Pierpoint

Identifying Noise

Signal

Noise

Pierpoint

Noise Removal

After cuts, the 40 K noise 3 keV noise peak is revealed, though ~50% of the peak is removed by the hard cuts.

Time Varying Scintillation Rates

- Cosmogenically activated isotopes and broken decay chains in detector components lead to a time varying energy spectrum.
- The region of interest exhibits a non-insignificant rate decrease that is not well correlated with any of the short-lived isotopes explored thus far.

Next Step: DM-Ice37 @ Boulby

IPA 2015

Pierpoint

Two 18.3 kg test crystals were deployed at the Boulby Underground Laboratory in Dec' 2014.

Crystals	⁴⁰ K [mBq/kg]	²³⁸ U chain- ²¹⁰ Pb [µBq/kg]	²³² Th chain- ²²⁸ Ra- ²⁰⁸ TI
DM-lce17	17	1500	160
DM-Ice37	<3	2100	
DAMA	0.6	24.2	8.5
Crystal R&D	1.5	188	2

DM-Ice37 – First Data

- Initial installation competitive with DM-Ice17 backgrounds for the full detector assembly.
- Newer PMTs and cleaner assemblies were installed after an initial one month run, reducing overall backgrounds by a factor of ~2.

Projected Sensitivity

- Long-term DM-lce17 data being analyzed, in particular exploration of the low energy rate decrease.
- With higher mass and lower backgrounds, full scale DM-lce will be able to provide a strong prove of the DAMA-favored dark matter region.

Pierpoint

IPA 2015

12

Summary

- DM-lce17
 - Successfully deployed and operated continuously for **3.5 years**
 - Demonstrated the feasibility of deploying and remotely operating direct detection dark matter experiments in the South Pole ice
 - The ice is incredibly low in background, and the environment is very stable.
 - 4-6 keV backgrounds are 7x higher than DAMA
 - ⁴⁰K contamination 30x larger than DAMA
- DM-Ice37
 - currently operating at Boulby
 - factor of 15 reduction in ⁴⁰K compared to DM-lce17
 - on-going R&D with crystal growers and Nal powder vendors to further reduce ⁴⁰K & U/Th contamination

Pierpoint