IceCube Particle Astrophysics Symposium, Madison, Wisconsin, 2015

Astrophysical Sources of the IceCube Cosmic Neutrino Events

Soebur Razzaque

University of Johannesburg

with Cecilia Lunardini and Lili Yang - arXiv:1504.07033 Reetanjali Moharana - arXiv:1501.05158

Outline of talk

- Plausible sources of IceCube cosmic neutrinos
 - Gamma-rays and UHECRs can provide clues
- Galactic source Fermi Bubbles
- Extragalctic sources UHECR sources?

IceCube Cosmic Neutrino Events (3 year)

37 events, ~9-25 from atmospheric muon and neutrino background

Hints (~8% chance) of clustering near the Galactic center

 $\sim 15^{\circ}$ for cascades

 $\sim 1^{\circ}$ for tracks

Cosmic Neutrinos and Fermi Bubbles

5 strongly correlated cascade events (central coordinate values within FB)

٠

4 weakly correlated cascade events (error ellipses touching FB contours)

Gamma Ray Fermi Bubbles

Huge gamma-ray emitting globular-shaped objects

Credit: NASA Goddard Space Flight Center

Hard spectrum, uniform projected intensity, well-defined boundary

VHE Gamma and Neutrino Fluxes from FB

VHE Gamma Rays from Fermi Bubbles

4100 m altitude near Sierra Negra Volcano, Puebla, Mexico

- * 0.1 100 TeV
- * 2pi sr Field of View
- * 0.1 degree @ > 5 TeV

4 meters high 7.3 meters in diameter

300 tanks in total, with 4 PMTs per tank

Detecting Fermi Bubbles with HAWC

Only a fraction of FB solid angle visible to HAWC in any given day (2-3 hours/day for North bubble)

interval of $\cos \theta$	$\langle f_\Omega angle$
[0.6, 0.7]	4.5×10^{-2}
[0.7, 0.8]	3.5×10^{-2}
[0.8, 0.9]	4.1×10^{-2}
[0.9, 1.0]	1.0×10^{-2}

- Overlap of HAWC field of view (magenta)
- Fermi Bubble contours (red)
- 5 IceCube events (blue)
- Measured diffuse gamma-ray flux regions by Fermi-LAT (grey)

VHE Gamma and Neutrino Events

Galactic Sources

Extragalactic Sources

Adopt a strategy ...

- Sources of ultrahigh-energy (≥ 80 EeV) cosmic rays are nearby
 - Within a 'GZK radius' of ~240 Mpc (z~0.06)
- UHECRs deflect by an angle of the order of 1° in the Galactic and intergalactic magnetic field (assuming protons)
 - Can potentially point to their sources
 - Much better pointing resolution than the cascade v events (~15°)
- Sources of UHECRs most likely accelerate particles over a wide energy range (Fermi acceleration mechanism)
 - Can potentially produce < 2 PeV neutrinos detected by IceCube

>100 EeV Cosmic Rays and Neutrinos

33 UHECR and 35 Neutrino events

>80 EeV Cosmic Rays and Neutrinos

60 UHECR and 35 Neutrino events

Galactic coordinates

Invariant Statistics

Unit vectors in the sky: $\hat{x} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)^T$

Angular separation between vectors: $\gamma = \cos^{-1}(\hat{x}_{\text{neutrino}} \cdot \hat{x}_{\text{UHECR}})$

 $i \equiv neutrino ; j \equiv UHECR$

Angular error of i-th neutrino event

 $\delta \chi_i^2 \leq 1$ Good-fit (forms a basis of correlation)

Null distribution:

Statistic: $\delta \chi_i^2 = \min_j (\gamma_{ij}^2 / \delta \gamma_i^2)$

- Randomly vary UHECR directions and evaluate $\delta \chi_i^2$ distribution
- Keeping detector-specific declination-dependence
- 100,000 randomly generated data sets

p - value:

• Number of times Nhits within $\delta \chi_i^2 \leq 1$ in simulated data sets/100,000

Cross-correlation Results, >100 EeV

- Small hint of correlation
 between UHECRs and
 cosmic neutrino data
- ~90% chance probability
- Dominated by PAO data

- Two null distributions:
- Semi-isotropic null (red)
- Exposure-corrected null (green)

Cross-correlation Results, >80 EeV, >60 EeV

Significance (p-value) decreases with decrease of energy threshold

Source search around UHECR directions

Event #	UHECR		ECR	Swift X-ray Source Catalog [24]			
2.040 //	RA	Dec	Experiment	Name	z	Type	
1	45.6	-1.7	PAO	NGC 1142	0.0289	Sy2	
				NGC 1194	0.0136	Sy1	
				MCG +00-09-042	0.0238	Sy2	
				NGC 1068	0.0038	Sy2	
11	150.1	-10.3	PAO	2MASX J10084862-0954510	0.0573	Sy1.8	
17	241.5	23	AGASA	$2 {\rm MASX}~J16311554{+}2352577$	0.0590	Sy2	
29, 34	295.6	43.52	TA	$2{\rm MASX}~J19471938{+}4449425$	0.0539	Sy2	
				ABELL 2319	0.0557	\mathbf{GC}	
				Cygnus A	0.0561	Sy2	
21	352.6	-20.2	PAO	PKS 2331-240	0.0477	Sy2	
2, 24, 25	294.5	-5.8	AGASA	2MASX J19373299-0613046	0.0103	Sy1.5	
34	340.6	12	PAO	MCG +01-57-016	0.0250	Sy1.8	
				MCG +02-57-002	0.0290	Sy1.5	
				UGC 12237	0.0283	Sy2	
	349.0	12.3	AGASA	NGC 7479	0.0079	Sy2/Liner	
				$2{\rm MASX}~J23272195{+}1524375$	0.0457	Sy1	
				NGC 7469	0.0163	Sy1.2	
	352.6	-20.2	Haverah Park	NGC 7679	0.0171	Sy2	
Neutrino Event #	UHECR			Kühr Radio Source Catalog [25]			
	RA	Dec	Experiment	Name	z	Type	
1	45.6	-1.7	PAO	NGC 1068	0.0038	Sy2	
21	352.6	-20.8	PAO	PKS 2331-240	0.0477	Sy2	
34	340.6	12	PAO	NGC 7385	0.0255	GC	

Monthing

Table 4. Sources correlated with UHECRs and neutrino events simultaneously.

- UHECRs (>100 EeV) must be correlated with one or more v events
- Search within a 3° error circle around UHECR directions
- Search within z=0.06
- Use X-ray, gamma-ray, radio source catalogues
- UHECRs, >100 EeV, in correlation with neutrinos point to sources in *Swift* BAT X-ray catalog
- Sources are dominantly weak AGNs (Syfert galaxies)

Summary

- Huge gamma-ray Fermi bubbles at the Galactic center
 - 5-9 neutrino events are spatially correlated with FB
 - Neutrinos follow gamma rays naturally in hadronic mechanism
 - HAWC will be able to establish FB as neutrino source or constrain the hadronic model of gamma-ray emission
- Extragalactic neutrino sources
 - Some hints (90% CL) of correlation with UHECRs, >100 EeV
 - UHECRs in turn point to X-ray bright sources in Swift-BAT catalog
 - Dominantly Seyfert galaxies (AGN)
 - More data will be needed ...

Backup Slides

FB from Galactic Center Starburst Activity

Hadronic model by *Crocker* & *Aharonian* 2011 $\Rightarrow t_{pp} \approx (n_{gas}\sigma_{pp}\kappa_{pp}c)^{-1} \sim 5 \times 10^9 \text{ yr}$

Results with energy rescaling, >100 EeV

- Energy of TA events are rescaled down by 25%
- 10 TA events ==> 4 TA events
- No significant correlation for TA or TA+PAO data

A. Aab et al. [TA and PAO Collaborations] 2014

X-ray, Neutrino and UHECR Luminosities

Source name	$L_X \left(10^{44} \ \mathrm{erg/s} \right)$	$L_{ u}$ (10 ⁴⁴ erg/s)		$L_{\rm cr}$ (10 ⁴⁴ erg/s)	
	$/L_R \left(10^{41} \text{ erg/s}\right)$	$\kappa=2.1$	= 2.3	$\kappa=2.1$	= 2.3
NGC 1142	1.58/0.012(74 GHz)	0.95	1.0	0.7	5.4
NGC 1194	0.12/0.00012(1.4 GHz)	0.2	0.2	0.04	0.2
MCG +00-09-042	0.17/0.0043(1.4 GHz)	0.64	0.71	0.3	2.1
NGC 1068	$0.031/0.0034(31.4~{\rm GHz})$	0.016	0.017	0.001	0.007
2MASX J10084862-0954510	1.04/0.0028(1.4 GHz)	3.9	4.32	44	578
$2{\rm MASX}~J16311554{+}2352577$	0.79/0.0048(1.4 GHz)	4.1	4.6	1600	22000
$2{\rm MASX}~J19471938{+}4449425$	1.66/0.0045(1.4 GHz)	6.8	7.6	211	26000
ABELL 2319	1.78/0.0046(1.4 GHz)	3.7	4.1	270	3500
Cygnus A	11.2/314(14.7 GHz)	3.7	4.1	290	3700
PKS 2331-240	0.81/1.32(31.4 GHz)	2.6	2.9	9.5	102
2MASX J19373299-0613046	0.055/0.0012(1.4 GHz)	0.24	0.26	1.3	7.3
MCG +01-57-016	0.23/0.0026(1.4 GHz)	0.71	0.78	0.5	3.6
MCG +02-57-002	0.25/0.00084(1.4 GHz)	0.95	1.1	1.0	7.5
UGC 12237	0.23/0.0011(1.4 GHz)	0.91	1.	0.9	6.6
NGC 7479	0.029/0.04(22 GHz)	0.07	0.08	0.3	1.4
$2{\rm MASX}~J23272195{+}1524375$	0.51/0.24(1.4 GHz)	2.4	2.7	280	2900
NGC 7469	0.4/0.0056(365 MHz)	0.3	0.3	2.2	14
NGC 7679	$0.1/0.00033(1.4~{\rm GHz})$	-	-	-	-
NGC 1068	0.031/0.0034(31.4 GHz)	0.016	0.017	0.001	0.007
PKS 2331-240	0.81/1.32(31.4 GHz)	2.6	2.9	9.5	102
NGC 7385	- /0.17(31.4 GHz)	0.7	0.8	0.5	4.0

Table 5. Neutrino (25 TeV-2.2 PeV) and cosmic-ray (500 TeV-180 EeV) luminosities required for the correlated sources in Table 4 to produce observed data. Also listed are *Swift*-BAT X-ray luminosity [24] radio luminosity for these sources, with corresponding radio frequencies in parentheses.