The Search for Milky Way Satellite Galaxies from Optical to Gamma-rays

Keith Bechtol for the DES and *Fermi*-LAT Collaborations IPA 4 May 2015

Dwarf spheroidal galaxies (dSphs)

- Dark matter content constrained by stellar kinematics
- Migh mass-to-light ratio
- 🗹 Close
- Astrophysically "clean"
- Ability to combine targets in a joint likelihood analysis

Formalism

Gamma-ray flux

Observables

12

6

Likelihood for individual target

$$\tilde{\mathcal{L}}_{i}(\boldsymbol{\mu},\boldsymbol{\theta}_{i} = \{\boldsymbol{\alpha}_{i},J_{i}\} | \mathcal{D}_{i}) = \mathcal{L}_{i}(\boldsymbol{\mu},\boldsymbol{\theta}_{i} | \mathcal{D}_{i})\mathcal{L}_{J}(J_{i} | J_{\text{obs},i},\sigma_{i})$$

4

 -64°

Joint likelihood

$$\mathcal{L}_{i}(\mu, \theta_{i} | \mathcal{D}_{i}) = \prod_{j} \mathcal{L}_{i}(\mu, \theta_{i} | \mathcal{D}_{i,j})$$
 $\mathcal{L}_{i}(\mu, \theta_{i} | \mathcal{D}_{i,j})$

15 dSphs, 6 yrs of *Fermi*-LAT data, Pass 8, 500 MeV to 500 GeV

Only 20 to 30% overlap of events with 4-year Pass 7 analysis (~statistically independent)

15 dSphs, 6 yrs of *Fermi*-LAT data, Pass 8, 500 MeV to 500 GeV

Only 20 to 30% overlap of events with 4-year Pass 7 analysis (~statistically independent)

dSphs represent complementary targets to the Galactic Center

GC J-factor ~100 times larger, but complex conventional non-thermal emission

dSphs represent complementary targets to the Galactic Center

GC J-factor ~100 times larger, but complex conventional non-thermal emission

Dark Energy Camera

Blanco 4 m Telescope, CTIO

Milky Way Companions Found in First-year DES Data

DES footprint in Galactic coordinates

Y1A1 dataset includes ~1600 deg² in SPT field, ~200 deg² in Stripe 82 field $_{12}$

THE

JARK

Take advantage of existing LAT analysis pipeline with new targets

Counts maps > 1 GeV, 10 deg x 10 deg

LAT & DES Collaborations Drlica-Wagner et al. arXiv:1503.02632

Take advantage of existing LAT analysis pipeline with new targets

Model-independent flux upper limits

A Common mass scale for Milky Way Satellite Galaxies

With notable exceptions, e.g., Segue 2, see Kirby et al. 2013

J-factor Distance Scaling

If most Milky Way dSphs are hosted by similar DM halos, DM annihilation flux is mainly determined by heliocentric distance

J-factor estimates from distance scaling

J-factor estimates from distance scaling

Gamma-ray Emission towards Reticulum II

Most significant gamma-ray excess for any dSph (or candidate) found at gamma-ray energies between 2 to 10 GeV in the direction of Reticulum II

Interpretation of significance depends on adopted trials factor

	Local Significance	Post-trials for DM mass and annihilation channel	Global Significance
<i>Fermi</i> -DES	2.4 <i>o</i>	1.5 <i>σ</i>	0.26 <i>o</i>
Geringer-Sameth et al.	2.8 σ	2.3 σ	Analysis focused on Reticulum II
Hooper & Linden	3.2 σ	No trials, use best-fit from Galactic Center	Depends on J-factor relative to other dSphs

Also, possible blazar PMN J0335–5046 located ~0.1 deg away

LAT & DES Collaborations Drlica-Wagner et al. arXiv:1503.02632

Geringer-Sameth et al. arXiv:1503.02320

Hooper & Linden arXiv:1503.06209

Dynamical and chemical confirmation of nearest candidate from DES as a DM dominated dSph

Velocity dispersion (3.3 \pm 0.7 km s⁻¹) indicates mass-to-light ratio of 470 \pm 210 M_{Sol} / L_{Sol} within the half-light radius (55 pc)

Good agreement with independent analysis by Walker et al. arXiv:1504.03060

Martinez et al. + LAT analysis

arXiv:1309.2641, arXiv:1503.0264

dSph	Log J
Segue 1	19.5 ± 0.29
Ursa Major II	19.3 ± 0.28
Coma Berenices	19.0 ± 0.25

Simon et al. analysis

arXiv:1504.02889

dSph	Log J
Reticulum II	18.9 ± 0.6

All in units of GeV² cm⁻⁵ sr

Geringer-Sameth et al. analysis

arXiv:1408.0002

dSph	Log J
Ursa Major II	19.42
Segue 1	19.36
Coma Berenices	19.02

Bonnivard et al. analysis

arXiv:1504.02048, arXiv:1504.03309

dSph	Log J
Ursa Major II	19.9
Coma Berenices	19.6
Reticulum II	19.5
Willman 1	19.5

±0.4 dex systematic uncertainty from triaxiality

Status of 2015 Milky Way Companions

Object	Classification	Photometry	arXiv References
Reticulum II	dSph	DECam (DES)	1503.02079, 1503.02584, 1504.02889, 1504.03060, 1504.07916
Horologium	dSph	DECam (DES)	1503.02079, 1503.02584, 1504.07916
Kim 2 / Indus I / DES J2108.8–5109	Globular cluster?	DECam (Stromlo Milky Way Satellite Survey + DES)	1502.03952, 1503.02079, 1503.02584
Eridanus II	dSph?	DECam (DES)	1503.02079, 1503.02584
Tucana II	dSph?	DECam (DES)	1503.02079, 1503.02584
Pictor / DES J0443.8 –5017	?	DECam (DES)	1503.02079, 1503.02584
Phoenix II / DESJ2339.9–5424	?	DECam (DES)	1503.02079, 1503.02584
Eridanus III / DESJ0222.7–5217	?	DECam (DES)	1503.02079, 1503.02584
Grus	?	DECam (DES)	1503.02079
Hydra II	dSph?	DECam (SMASH)	1503.06216
Pegasus III	dSph?	SDSS + DECam	1503.08268
Laevens 2 / Triangulum II	?	PanSTARRS + Large Binocular Camera	1503.05554

30 kpc away, also interesting target for DM searches, see Hooper & Linden arXiv:1503.06209

Thinking Further Ahead

Tens to hundreds of additional dSphs expected

Second year of DES completed in Feb 2015, increases coverage to >4000 deg²

Large Magellanic Cloud and Smith Cloud

Large Magellanic Cloud

Conservative J-factor estimates in range from 9.4 x 10¹⁹ to 2.8 x 10²⁰ (GeV² cm⁻⁵ sr)

Smith High-velocity Cloud

J-factor estimates range from 4.2×10^{18} to 1.8×10^{20} (GeV² cm⁻⁵ sr)

Conclusions

Confirmed dSphs already provide robust DM constraints

Upper limits below the canonical thermal relic cross section for DM of mass < 100 GeV annihilating via quark and tau-lepton channels

More targets can quickly translate to more sensitive searches

Projected sensitivity in 5 to 10 yrs expressed as an upper limit...

dSphs also have excellent discovery potential

Extras

Segue 1 Credit: Marla Geha

Segue 1 Credit: Marla Geha Ultra-faint galaxies are discovered as arcminute-scale statistical over-densities of individually resolved stars

> Segue 1 Credit: Marla Geha

Bonnivard et al. arXiv:1504.02048

J-factor Comparison (0.5 deg)

Bonnivard et al. arXiv:1504.03309

Thinking Further Ahead

Tens to hundreds of additional dSphs expected

Second year of DES completed in Feb 2015, increases coverage to >4000 deg²

TABLE 1

PREDICTED NUMBER OF]	DWARF GALAXIES F	OR LSST AND DES	
	DES (± 10/90)	LSST ($\pm 10/90$)	+ PanSTARRS,
$L > 10^3 L_{\odot}, r_{lim} = 23.8$			Skylvlapper, etc.
Massive in the past	7^{+2}_{-2}	28^{+6}_{-5}	
Pre-reionization Fossils	$7^{+\bar{3}}_{-2}$	30^{+11}_{-5}	
Earliest Infall	$5^{+ar{4}}_{-2}$	23^{+11}_{-6}	
$L < 10^3 L_{\odot}, r_{lim} = 23.8$		0	
Massive in the past	10^{+9}_{-6}	40^{+29}_{-15}	
Pre-reionization Fossils	10^{+14}_{-6}	$43^{+\bar{3}\bar{6}}_{-19}$	
Earliest Infall	8^{+9}_{-5}	35^{+32}_{-15}	
$L > 10^3 L_{\odot}, r_{lim} = 25.8$			
Massive in the past	8^{+3}_{-3}	33^{+8}_{-6}	Harais et al. 2017
Pre-reionization Fossils	9^{+4}_{-3}	37^{+16}_{-8}	arXiv:1407.4470
Earliest Infall	6^{+4}_{-3}	25^{+14}_{-7}	
$L < 10^3 L_{\odot}, r_{lim} = 25.8$			
Massive in the past	42^{+31}_{-18}	171^{+117}_{-60}	See also He et al. 2015
Pre-reionization Fossils	56^{+43}_{-27}	179^{+128}_{-84}	arXiv:1309.4780
Earliest Infall	$20^{+\bar{1}\dot{7}}_{-11}$	$81^{+ar{6}ar{0}}_{-28}$	