Long Baseline Neutrino Oscillations Now and in the Future: T2K and DUNE

Alex Himmel Duke University

IceCube Particle Astrophysics Symposium Madison, WI May 5th, 2015

Outline

- Neutrino oscillations
 - What we know and what we don't
- The T2K Experiment
 - Long-baseline oscillation analyses
- The DUNE Experiment
 - Current status
 - Future sensitivity

Neutrino Oscillations

• Create in one flavor (v_{μ}) , but detect in another (v_{e})

Each flavor (e, μ) is a superposition of different masses (1, 2)
 ν₁ ∧ ν_μ

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$
"Mixing Matrix"

Neutrino Oscillations

• With only 2 neutrinos, the oscillation formula is simple:

The PMNS Mixing Matrix

 $\begin{bmatrix} v_e \\ v_\mu \\ v_\tau \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ v_{12} & v_{13} \end{bmatrix}$

Бруно Понтекоры

Pontecorvo

Sov.Phys.JETP 6:429, 1957 Sov.Phys.JETP 26:984-988, 1968

Maki, Nakagawa, Sakata Prog.Theor.Phys. 28, 870 (1962)

What We Know

What We Don't Know

Oscillation Physics at T2K

 $\Delta m_{\rm sol}^2$

 $\nu_{\mu} \rightarrow \nu_{e}$ Appearance: θ_{13} , δ_{CP}

Alex Himmel

 V_{γ}

Alex Himmel

The T2K Experiment

J-PARC Neutrino Beam

- 30 GeV *p* beam on graphite target to produce π^{\pm} , K^{\pm}
- Focus charged mesons
 - 3 Large electromagnetic "horns" act like lenses
 - 250,000 amps every ~2 seconds
- Mesons decay to produce a beam of neutrinos

Off-axis Beam

- 2.5° off-axis angle
 - 2-body π decay gives narrow range of ν energies
- Tune peak energy for oscillations
 - More events at max oscillations
 - Fewer backgrounds from high energy

Alex Himmel

Near Detectors: ND280

- I Bean
 - Multi-component magnetized detector.
 - 2.5° off-axis

Alex Himmel

• Measure spectrum and composition before oscillations

2.5° v beam

ND280

- Multiple components
 - 2 scintillator trackers
 - 3 time-projection chambers
 - POD π^0 detector
 - EM Calorimeter
 - Muon range detector interleaved in magnet
- Select CC v_{μ} events - Long muon tracks

ND280

- ND280 magnetized to 0.2T
 - Magnet from CERN UA1
- Curvature gives momentum and charge:

$$\frac{p}{q} = B r_{\rm curv}$$

ND280 Fit to Constrain Systematics

- 3 samples, 2D fit:
 - $-\mu^{-}$ momentum and angle
- Dramatically reduces uncertainty on Neutrino rate = Flux × Cross section
- Systematic uncertainty at far detector reduced from >20% to 7-8%

Detecting Neutrinos at the FD

- Large water Chernekov detector
 - 22.5 ktons of ultra pure water
 - 11,129 20" PMTs, 40% coverage
- Cherenkov cones appear as a rings.
 - More energetic particles leave brighter rings.
- Cherenkov threshold
 - Constant *velocity* threshold gives energy thresholds proportional to *mass*

Particle Identification

Shower-like

• e[±], γ

Track-like • μ^{\pm}, π^{\pm}, p

CC v_{μ} Events 16 Data 64% v_{μ} CCQE 30% v_{μ} CC non-QE ν_{μ} muon track 6% NC 6 4 2 0 Reconstructed v Energy (GeV) 120 Events 91% efficiency

How We Measure Oscillations: Disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \left(\cos^{4} \theta_{13} \sin^{2} 2\theta_{23} + \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \right) \sin^{2} \left(\frac{\Delta m^{2} L}{4E_{\nu}} \right)$$

$$PDG 2013$$

$$PDG 2013$$

$$Measured Prediction Predictin Prediction Prediction Prediction Prediction Prediction Pr$$

Fit for v_{μ} Disappearance

$$\Delta m_{32}^2 = (2.51 \pm 0.10) \times 10^{-3} \,\mathrm{eV}^2 \,\Delta m_{13}^2 = (2.48 \pm 0.10) \times 10^{-3} \,\mathrm{eV}^2$$

Alex Himmel

PRL 112 (2014) 181801

Fit for v_{μ} Disappearance

Fit for v_e Appearance

Combine v_e appearance sample with near detector **unoscillated prediction** to extract oscillation parameters.

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \left(1 + \frac{4\sqrt{2}G_{F}n_{e}E}{\Delta m_{31}^{2}}\left(1 - 2\sin^{2}\theta_{13}\right)\right) - \sin^{2}\theta_{12}\sin^{2}\theta_{23}\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right)\sin^{2}\left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right) + \cos^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\theta_$$

Fit for v_e Appearance

Combine v_e appearance sample with near detector **unoscillated prediction** to extract oscillation parameters.

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \frac{\sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \left(1 + \frac{4\sqrt{2}G_{F}n_{e}E}{\Delta m_{31}^{2}} \left(1 - 2\sin^{2} \theta_{13}\right)\right)}{-\sin^{2} \theta_{12} \sin^{2} \theta_{23} \sin^{2} \theta_{13} \cos^{2} \theta_{13} \sin^{2} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \sin^{2} \left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right)}$$
Alex Himmel
CP violation

Joint Fits to $v_{\mu} + v_e$

- Likelihood ratio fit of v_{μ} and v_{e} samples
- Both Frequentist and Bayesian analyses performed
- Simultaneous fit for:

$$\delta_{cp}, \ \theta_{13}, \ \theta_{23}, \ \Delta m_{32}^2$$

Contours using T2K Data Only

- sin²(θ₂₃) shifts up to
 0.52 in response to
 large appearance
 signal
- Our appearance signal is large relative to reactor measurements
- 2013 Weighted average
 - Daya Bay
 - RENO
 - Double Chooz

 $-\sin^2(2\theta_{13}) = 0.095 \pm 0.010$

PRD 91 (2015) 072010

Contours with Reactor Constraint

- sin²(θ₂₃) shifts up to
 0.52 in response to
 large appearance
 signal
- Our appearance signal is large relative to reactor measurements
- 2013 Weighted average
 - Daya Bay
 - RENO
 - Double Chooz

 $-\sin^2(2\theta_{13}) = 0.095 \pm 0.010$

PRD 91 (2015) 072010

Constraint on $\delta_{\rm CP}$

36
The DUNE Experiment

10

DUNE Status

Recently reformed as a new international collaboration
 – 769 collaborators from 147 institutions

Long baseline, wide band beam allows mass hierarchy, and potentially second maximum measurements.

LBNE	ν _e	anti-v _e
Signal	779	139
Background	374	238

LBNE sensitivities (34 kTon × 3+3 years × 1.2 MW), but not so far off from DUNE sensitivity

More Physics with DUNE

Infall

Neutronization

Accretion

Cooling

L (10⁵² ergs/s) - Precision measurements of all 10 mixing angles Supernova neutrinos (MeV) $- v_{\rho}$ in DUNE, can see neutronization Near detector physics Cross sections, exotics Non-neutrino physics Low or no background searches Time (seconds) for proton decay to Kaons

Alex Himmel

Other oscillation physics

Conclusions

- T2K uses a narrow-band off-axis beam to measure threeflavor neutrino mixing
 - Most precise measurement of θ_{23}
 - Favoring maximal disappearance
 - $> 7\sigma$ evidence of v_e appearance
 - First exclusion of a range of $\delta_{\rm CP}$
- With full exposure, T2K may see a hint of CP violation
- DUNE is the next generation neutrino oscillation experiment
 - Good sensitivity to CP violation and mass hierarchy
 - Precision test of the 3-neutrino model
 - Lots of other oscillation and non-oscillation physics

Backup Slides

J-PARC Neutrino Beam

Near Detector

Accumulated Protons-on-Target

Accumulated Protons-on-Target

Accumulated Protons-on-Target

Future Sensitivity

Assumptions

- $7.8 \times 10^{21} \text{ POT}$
- $\sin^2(2\theta_{13}) = 0.1$ with ultimate reactor precision
- $\Delta m^2 = 2.4 \times 10^{-3} \, eV^2$
- $\sin^2(\theta_{23})$ as shown
- Normal Hierarchy
- Conservative (2012) systematic errors, correlated between nu and antinu
- Evaluated potential future sensitivity under different running conditions
 - 50% neutrino/50% antineutrino best sensitivity for the widest range of true parameters values

Alex Himmel

Neutrino Oscillations

Beam Modeling and Constraint

- Simulate the beam with:
 - Fluka in target, Geant3 in beamline
- Components:

 $\begin{array}{rl} 93\% \, \nu_{\mu} & 6\% \, \overline{\nu}_{\mu} \\ 1\% \, \nu_{e} & 0.1\% \, \overline{\nu}_{e} \end{array}$

- Reweight hadronic interactions and π/ K production with external data
 - Reweight in target (C) and horns (Al)
 - Primary source is NA61/SHINE at CERN
 - Same beam energy and carbon target
 - Other sources for aluminum interactions

N. Abgrall *et al.* (NA61/SHINE Collaboration), Phys. Rev. C 84, 034604 (2011)
 N. Abgrall *et al.* (NA61/SHINE Collaboration), Phys. Rev. C 85, 035210 (2012)
 T. Eichten *et al.*, Nucl. Phys. B 44 (1972)
 J. V. Allaby *et al.*, Tech. Rep. 70-12 (CERN,1970)

Alex Himmel

Flux Constraints with External Data

- Reweight the beam MC based on external hadron production data
 - NA61/SHINE (CERN) [1][2] which has 30 GeV *p*-C collisions
 - Eitchen et al. [3] , and Allaby et al. [4]
- We reweight hadron production in both the target (carbon) and horns (aluminum)
- Tune hadron interaction rate and π/K production

Flux Systematic Uncertainties

- 10-15% error on flux w/ external data
 - Hadron production
 - Beam alignment
- After fit to v_{μ} CC data
 - Flux error alone goes from $12\% \rightarrow 8\%$ at osc. peak
 - Central values shifted to better fit the data

Cross Section Simulation and Constraints

- NEUT simulation (2012)
 - Initial interaction
 - CCQE, resonant-π, etc.
 - Final State nuclear effects
 - charge exchange, π absorption, etc.

• Parameterize models

- Some model parameters like
 M_A, *p_F*, *E_b*
- Some energy-dependent normalizations
- Tune model parameters to external neutrino data
 - Primarily MiniBooNE

Alex Himmel

Cross Section Systematic Uncertainties

- Fit to ND280 v_{μ} data reduces errors correlated between ND280 and SK
 - Reduced by a factor of 2 or more
- Not all uncertainties constrained:
 - Final state nuclear effects
 - Carbon-Oxygen differences
 - $\sigma(v_e)/\sigma(v_\mu)$
 - $-\sigma(\text{anti-}\nu)/\sigma(\nu)$

Particle Identification at the ND

- Identify particle types using topology:
 - Track-like or shower-like

 Identify individual tracks using energy deposition

- dE/dx vs. *p* in the TPC's

Selecting CCv_{μ} in ND280

• Divide into 3 sub-samples:

СС 0π

- Quasielastic
 enhanced sample
- 73% purity

Alex Himmel

CC 1π⁺

- ∆ resonance enhanced sample
- 49% purity

CC other

- Primarily deep inelastic scattering
- 74% purity

Measuring Neutrino Energy

- The more energetic the particle, the more Cherenkov light
- In quasi-elastic events, momentum + beam angle give original neutrino energy
 - Need no information from the invisible proton

Beam direction
$$\begin{array}{c}
p_{e/\mu} \\
\theta_{beam}
\end{array}
E_{\nu} = \frac{m_p^2 - m_{n'}^2 - m_{\ell}^2 + 2m_{n'}^2 E_{\ell}}{2(m_{n'} - E_{\ell} + p_{\ell}\cos\theta_{beam})}
\end{array}$$

SK Event Selection

Alex Himmel

SK Event Selection

SK v_{μ} Event Selection

- Limit decay electrons to exclude events with invisible π^{\pm} 's
 - $-\pi^{\pm}$ threshold: 212 MeV
 - $-e^{\pm}$ threshold: 0.8 MeV

SK v_e Event Selection

SK v_e Event Selection

Beam Timing

Fiducial Volume

Contained in ID

- Likelihood-based reco.
 - Compare *e*-like and π^0 -like hypotheses
 - Exclude events with $m_{\rm inv} \sim 135 \text{ MeV}$

SK v_e Event Selection

- Cross-check π^0 background using an enriched sample of π^0 events

- 2 *e*-like rings with $m_{\gamma\gamma}$ = 135±50 MeV

Systematic Uncertainties at Super-K

<i>v_e</i> Events	V _e	$oldsymbol{ u}_{\mu}$	
ND280-constrained flux and cross section	3.1%	2.7%	>20% without
Unconstrained cross section	4.7%	5.0%	ND280
SK detector efficiency	2.4%	3.0%	
Final or secondary hadronic interactions	2.7%	4.0%	
Total	6.8%	7.7%	

Sensitivity vs. Data Fit

Multinucleon Interactions

- Neutrinos may interact with multiple nucleons
 - Looks CCQE, but has different kinematics
 - Potential explanation for $M_A \approx 1.2$ GeV instead of 1.0 GeV
- Studied potential for bias in our result from neglecting multinucleon interactions
 - Use many fake experiments with random systematic errors

Our model:

- J. Nieves et. al., PRC83, 045501 (2011)
- J. Sobczyk, PRC86, 015504 (2012)

Suggested potential for bias in oscillations: O. Lalakulich and U. Mosel, PRC86, 054606 (2012). D. Meloni and M. Martini, PLB716, 186 (2012). P. Coloma, et al, arXiv:1311.4506 (2013).

Effect of Multinucleon Interactions

Bayesian δ_{CP} , MH, Octant Constraints

0.03

- **Bayesian** analysis can marginalize over the mass hierarchy
- Compare probabilities of different hierarchies and θ_{23} octants

PRELIMINARY 90% Credible Interval 68% Credible Interval **Marginal Posterior 1D Posterior Mode** 68% Outside 90% Credible 0.01 Credible interval Interval 0.005 **0**^l -3 -2 -1 2 0 3 $\boldsymbol{\delta}_{cp}$ NH IH Sum $\sin^2(\theta_{23}) \leq 0.5$ 18% 8% 26% $sin^{2}(\theta_{23}) > 0.5$ 50% 24% 74% Sum 68% 32%

Bi-probability

Future Sensitivity with NOvA

- A joint analysis with NOvA:
 - Increases significance of the "luckiest" point
 - Adds sensitivity in $\delta_{\rm CP}$ regions where there would be none.

- Same assumptions, plus
 - Choose $\sin^2(\theta_{23}) = 0.5$
 - 3.6×10^{21} NOvA POT, even split
 - Shown both without (solid) and with (dashed) systematic errors

Alex Himmel

Accepted by PTEP, arXiv:1409.7469 [hep-ex]

Near Detectors: INGRID

v beam

- Modules with alternating planes of iron and plastic scintillator
- On-axis

y

Measures beam intensity and direction over time.

Near Detectors: INGRID

- Modules with alternating planes of iron and plastic scintillator
- On-axis
- Measures beam intensity and direction over time.

- Plastic scintillator
 - Light emitted as charged particles pass through
 - Light picked up by optical fibers and carried to optical detectors.

Atx Himmel

- Argon Gas Time Projection Chamber
 - Charged particles ionize argon gas
 - Electric field drifts
 the electrons
 towards the readout
 plane
- Position and arrival time give full 3D reconstruction

