Measuring the Sterile Wave: a Short-Baseline v_µ Disappearance Experiment using Neutrinos from Kaon Decay-at-rest

T. Wongjirad, S. Axani, G. Collin, J. Conrad, M. Shaevitz, J. Spitz IPA 2015, Madison Wisconsin May 5th, 2015

photo © J. Mosetic

The Puzzle

- A number of experiments see an unexpected deficit or excess of neutrino events
- Interpretable as coming from sterile neutrino oscillation with ∆m² around 0.1-10 eV²

Experiment name	Туре	Oscillation channel	Significance
LSND	Low energy accelerator	muon to electron (antineutrino)	3.8σ
MiniBooNE	High(er) energy accelerator	muon to electron (antineutrino)	2.8σ
MiniBooNE	High(er) energy accelerator	muon to electron (neutrino)	3.4σ
Reactors	Beta decay	electron disappearance (antineutrino)	1.4-3.0ơ (varies)
GALLEX/SAGE	Source (electron capture)	electron disappearance (neutrino)	2.8σ

Sterile Neutrino

 Put all the data out there together and interpret with model with 1 additional sterile neutrino (3+1)

Sterile Neutrino

 Put all the data out there together and interpret with model with 1 additional sterile neutrino (3+1)

 Anomalies motivating experiments to verifying each type of anomaly directly

Experiment name	Туре	Oscillation channel	Significance
LSND	Low energy accelerator	muon to electron (antineutrino)	3.8σ
MiniBooNE	High(er) energy accelerator	muon to electron (antineutrino)	2.8σ
MiniBooNE	High(er) energy accelerator	muon to electron (neutrino)	3.4σ
Reactors	Beta decay	electron disappearance (antineutrino)	1.4-3.0σ (varies)
GALLEX/SAGE	Source (electron capture)	electron disappearance (neutrino)	2.8σ

 Anomalies motivating experiments to verifying each type of anomaly directly

Experiment name	Туре	Oscillation channel	Significance
Accelerator experiments, e.g. MicroBooNE, Short Baseline Neutrino (SBN) program at Fermilab		muon to electron (antineutrino)	3.8σ
		muon to electron (antineutrino)	2.8σ
		muon to electron (neutrino)	3.4σ
Remeasuring e.g. Nucifer	y reactor v's, r, Prospect	electron disappearance (antineutrino)	1.4-3.0σ (varies)
High intensit e.g. SOX, Ce	y v sources, eLAND, etc.	electron disappearance 2.8σ (neutrino)	

	Joseph	Schukraft tomorrow 11:00			
	Anne S			Oscillation channel	Significance
Anomalies MicroBo motivating experiments to verifying each type of anomaly		oNE: a not-so-micro LArTPC		muon to electron (antineutrino)	3.8σ
		Accelerator experiments, e.g. <u>MicroBooNE</u> , Short Baseline Neutrino (SBN) program at Fermilab		muon to electron (antineutrino)	2.8σ
				muon to electron (neutrino)	3.4σ
directly	Gilie tod	Remeasuring	reactor v's, , <u>Prospect</u>	electron disappearance (antineutrino)	1.4-3.0σ (varies)
PROSPECT: a short-baseline reactor antineutrino measurement (in non-accelerator parallel)		/ v sources, LAND, etc.	electron disappearance (neutrino)	2.8σ	

7

- Experiments probing (anti-)v_e oscillations
- Is there a complimentary approach?

Experiment name	Experiment name Type		Significance	
Accelerator experiments, e.g. MicroBooNE, Short Baseline Neutrino (SBN) program at Fermilab		muon to electron (antineutrino)	3.8σ	
		muon to electron (antineutrino)	2.8σ	
		muon to electron (neutrino)	3.4σ	
Remeasuring e.g. Nucife	g reactor v's, r, Prospect	electron disappearance (antineutrino)	1.4-3.0σ (varies)	
High intensite.g. SOX, C	ty v sources, eLAND, etc.	electron disappearance (neutrino)	2.8σ	

Muon Neutrino Disappearance

- Not all experiments see anomalies
- In fact, no experiment has seen muon neutrino disappearance
- An important constraint

Muon Neutrino Disappearance

 If sterile neutrinos exist, there must be some amount of muon neutrino disappearance!

A proposal, with constraints

- A call for proposals from the DOE at the WINP workshop (Feb 2015)
- Must satisfy the following:

A proposal, with constraints

- A call for proposals from the DOE at the WINP workshop (Feb 2015)
- Must satisfy the following:
 - Not associated with Fermilab program (e.g. SBN)
 - Decisive within 3 years of running
 - be a fraction of 10 million dollars

A proposal, with constraints

- A call for proposals from the DOE at the WINP workshop (Feb 2015)
- Must satisfy the following:
 - Not associated with Fermilab program (e.g. SBN)
 - Decisive within 3 years of running
 - be a fraction of 10 million dollars
- Present such a proposal

KPipe

<u>BEAM</u>

- Neutrinos from a highintensity beam of stopped kaons
- Muon neutrinos monoenergetic

<u>DETECTOR</u>

- A pipe, 3 m in diameter and 90 m in length, filled with liquid scintillator
- Measure oscillation wave

KPipe

<u>BEAM</u>

- Neutrinos from a highintensity beam of stopped kaons
- Muon neutrinos monoenergetic

<u>DETECTOR</u>

- A pipe, 3 m in diameter and 90 m in length, filled with liquid scintillator
- Measure oscillation wave

JPARC MLF

- Beam at Materials and Life Science Facility at JPARC
- 3 GeV protons on Hg
- target power: 1 MW
- pulsed with tight beam windows:
 2 pulses with 80 ns width,
 540 ns apart at 25 Hz

JPARC MLF

• Our flux simulation: 3 GeV hitting Hg target

17

KDAR neutrinos: Energy known exactly

Beam Timing

80 ns

80 ns

KPipe

<u>BEAM</u>

- Neutrinos from a highintensity beam of stopped kaons
- Muon neutrinos monoenergetic

<u>DETECTOR</u>

- A pipe, 3 m in diameter and 90 m in length, filled with liquid scintillator
- Measure oscillation wave

KPipe

<u>BEAM</u>

- Neutrinos from a highintensity beam of stopped kaons
- Muon neutrinos monoenergetic

What we want to measure

What we want to measure

Seeing the osc. wave would be definitive evidence for sterile v's

Detector

• A (BIG) pipe, 3 m diameter and 90 m long, filled with liquid scintillator

Detector Signal

• What we are after:

Detector Signal

• What we are after:

Detector Signal

Photon Detector: SiPMs

- Silicon photomultipliers
 - compact
 - low voltage ~ 27 V bias needed
 - inexpensive: for very large bulk order, ~\$20/SiPM

Instrumentation

Hoops of 100 SiPMs read out in quarters (25 SiPMs/quarter ganged together. Quarter-hoops are mounted on panels that separate define inner target region From veto region.

Veto region is read out as a block

Instrumentation

- Coverage only 0.4%
- Relying on high light yield of liquid scintillators to overcome sparse instrumentation
- How many SiPMs one of the key handles for lowering costs

Signal Selection

- Signal events have neutrino-induced muon interactions. Remove backgrounds, which we expect will be mostly cosmic rays
 - 2 flashes: muon, then Michel electron
 - no veto hits
 - in time
 - 2 flashes close in Z
 - upper energy cut on both muon and Michel electron pulse, to remove high energy cosmic ray events
 - low energy threshold for noise
- Studied with detector MC

Signal Simulation

• simulated photon arrival time

Signal Simulation

- Estimated photons collected
- MC scintillator produces ~8000 photons/MeV
- With current coverage, seems to be enough light

Backgrounds

- Cosmic rays are main background
- Timing and selection will bring event background down
- Studied via simulation

Cosmic Ray Simulation

- Cosmic ray simulation is working
- preliminary: need to generate many more events
- so far, cosmic rate seems manageable with selection cuts
- ~1e-6 suppression factor when selecting events around beam time

Sensitivity Study

- Inputs from kaon production and detector simulation
 - muon reconstruction uncertainty: 30 cm (gaussian)
 - kaon creation point uncertainty: 20 cm (uniform)
 - efficiency: 87%
- Shape only analysis
 - Fit only to frequency
 - ignore normalization of sin wave

Sensitivity Study

 10^{-1}

 $sin^2(2\theta_{uu})$

Collin 90% allowable region

3+1 Best Fit

10⁻²

10

- gray band shows uncertainty in sensitivity due to kaon production model.
- Have 2: Geant4 and MARS — 70% different

*costs do not include civil engineering
Sensitivity Study

KPipe length:90m, closest point:32m (3 years, shape only)

KPipe would exclude some of allowed 3+1 global fit parameter space at 5 sigma

complements other short-baseline experiment, SBN@Fermilab

> *costs do not include civil engineering

Sensitivity Study

90 m long detector

KPipe -- length 90m -- MARS15/Geant4 -- 3 years, shape only

- extend muon disappearance limit by an order of magnitude
- complimentary to SBN muon disappearance reach

*costs do not include civil engineering

Summary

- Observation (or lack there of) of muon neutrino disappearance is important in understanding sterile anomaly
- KPipe is a proposal to look for muon neutrino disappearance at around 1-10 eV² given the WINP constraints
- Lots of power for less than 5 million dollars
- Preparing a paper with more details

Backup

Muon Neutrino Disappearance

- overly optimistic case: sign of sterile neutrinos though muon disappearance just past limits
- more realistically, one or more data sets has a problem, so we need to check both appearance and disappearance

JPARC MLF

 Being on the upstream side of target reduces background from decay in flight neutrinos

all events

 $\cos \theta < 0$ (w.r.t proton direction)

n.b. scaled by 2 to allow comparison with left plot

Detec

- Such a big
- Idea: use le
- used for sail

DuroMaxx[®] -- Steel Reinforced Polyethylene Tea

Detector Medium

- Fill vessel with liquid scintillator
- options:
 - Mineral oil + pseudocumeme
 - pros: used by another neutrino experiment, NOVA, supposedly inexpensive, about 4500 photons/MeV
 - cons: pseudocumeme can be aggressive solvent
 - LAB: linear alkyl benzene
 - pros: higher light yield ~10,000 photons/MeV, non-toxic
 - con: potentially more expensive

Reactor Anomaly

- World reactor neutrino data
- Interpret data with neutrino oscillations

Reactor Anomaly

 Reanalysis of old reactor data sets show observed events is lower than expectation

$$P(\bar{\nu}_e \to \bar{\nu}_e)$$

Sterile Neutrino

- How to interpret all of the anomalies?
- Could there be a new neutrino?
- New neutrino cannot interact via the weak force — width of the Z boson tells us only 3 couple weakly

47

Muon Kinematics

- In order to measure oscillation of muon neutrinos, measure interaction of neutrinos along pipe that make muons
- Signal from KDAR (black) >20 times larger than decay-inflight background neutrinos

120

100

800

600

400

200

3

 θ_{μ} (radians)

2.5

Detector Location

Studied possible locations of pipe around MLF building

Chose location (highlighted in orange) based on sensitivity

Detector Medium

- received test piece of HDPE
- testing to see if material withstands attack from pseudocumene
- in the process of trying to get some LAB

Efficiency

- According to simulation: ~87%
- matches analytic calculation using muon spectrum and expected range

neutrino induced muons

counts

Cosmic Ray Simulation

- Cosmic ray simulation using package called CRY
- generates cosmic ray shower event at given latitude and altitude
- particles provided: muons, photons, pions, neutrons, protons

52

Proton-on-target Geant4 sim (w/ simplified geometry)

KDAR neutrino creation position

Intrinsic baseline uncertainty is +/-25 cm or so.

Parent	Process	Cross section (cm^2)	events/ton/year
$K^+ \to \mu^+ \nu_\mu$	$\nu_{\mu}C \rightarrow \mu^{-}N^{*}$	8.4×10^{-39}	757
$K^+ \to \mu^+ \nu_\mu$	$\nu_{\mu}C \to \nu_{\mu}C^* \ (15.11)$	4.2×10^{-41}	3.7
$K^+ \to \mu^+ \nu_\mu$	$0.26\% \ \nu_{\mu} \rightarrow \nu_{e}, \ \nu_{e}C \rightarrow e^{-}N^{*}$	1.4×10^{-38}	3.3
$\mu^+ \to e^+ \overline{\nu}_\mu \nu_e$	$0.26\% \ \overline{\nu}_{\mu} \to \overline{\nu}_{e}, \ \overline{\nu}_{e}p \to e^{+}n$	9.5×10^{-41}	3.3
$\mu^+ \to e^+ \overline{\nu}_\mu \nu_e$	$\nu_e C \to e^- N_{gs}$	8.9×10^{-42}	58.3
$\mu^+ \to e^+ \overline{\nu}_\mu \nu_e$	$\nu_e C \to e^- N^*$	4.3×10^{-42}	28.1
$\mu^+ \to e^+ \overline{\nu}_\mu \nu_e$	$\nu C \rightarrow \nu C^* \ (15.11)$	10.5×10^{-42}	68.9
$\mu^+ \to e^+ \overline{\nu}_{\mu} \nu_e$	$\nu_e e^- \rightarrow \nu_e e^-$	3.13×10^{-43}	8.2
$\pi^+ \to \mu^+ \nu_\mu$	$\nu_{\mu}C \to \nu_{\mu}C^* \ (15.11)$	2.8×10^{-42}	18.3

Assumptions that go into event rate (above):

Assumption	Value	Comment			
Baseline	20 m				
Detection efficiency	100%	For simplicity			
Detection target	CH_2				
π^+/p	0.256	Geant4 (semi-realistic geometry)			
K^+/p	0.0035	Geant4 (semi-realistic geometry)			
Protons on target	3E22 POT/year	Consistent with MLF plan			

MARS predicts 75% more

Neutrino

- One of the particles of the standard model
- There are three flavors: electron, muon, tau
- Interact through the weak force

from Particle Zoo

Neutrinos can change flavor

- Change flavor as they propagate
- Seen in many experiments over the past few decades

Neutrino Oscillation Model

- Requires that neutrinos have mass
- Mass and flavor eigenstates not the same: overlap parameterized by mixing matrix

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

Neutrino FlavorUnitary MixingNeutrino MassEigenstatesMatrixEigenstates

$$\left(\begin{array}{ccc} U_{e1} & U_{e2} & U_{e3} \end{array} \right) \left(\right)$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

 Result: probability of detecting neutrinos with a certain flavor oscillates as a function of L/E

Mixing Matrix Flavor States **Mass States** $\begin{pmatrix} \nu_a \\ \nu_b \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \quad \text{w/mass } m_1 \\ \text{w/mass } m_2$ Example 2 v model For a neutrino, v_a, with energy, *E*, after a distance, *L*, in vacuum detection probability $\nu_{\mathbf{a}}$ Result is sinusoidal probability, function of L/E 500 1000 1500 2000 distance

 Result: probability of detecting neutrinos with a certain flavor oscillates as a function of L/E

Mixing Matrix Flavor States **Mass States** $\begin{pmatrix} \nu_a \\ \nu_b \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \quad \text{w/mass } m_1 \\ \text{w/mass } m_2$ Example 2 v model For a neutrino, v_a, with energy, E, after a distance, L, in vacuum amplitude gives info on detection probability $\nu_{\mathbf{a}}$ Result is mixing parameter sinusoidal probability, frequency gives info on function of L/E mass squared splitting 500 1000 1500

distance

• Experimental Evidence

- Many measurements have been made using many different sources
- 3 neutrino model can explain almost all of the data

- Summary diagram:
 - bars depict mass states
 - colors show proportion of flavor mixture for each mass state
- Characterization of model incomplete
 - e.g. order of mass states unknown

- found two unique masssquared values (though order of splittings unknown)
- one mass splitting much larger than other reason why 2-flavor approximation is often good first order fit to data

Anomalies

• But ... not all neutrino data fits into 3 neutrino model

Experiment name	Туре	Oscillation channel	Significance
LSND	Low energy accelerator	muon to electron (antineutrino)	3.8σ
MiniBooNE	High(er) energy accelerator	muon to electron (antineutrino)	2.8σ
MiniBooNE	High(er) energy accelerator	muon to electron (neutrino)	3.4σ
Reactors	Beta decay	electron disappearance (antineutrino)	1.4-3.0σ (varies)
GALLEX/SAGE	Source (electron capture)	electron disappearance (neutrino)	2.8σ

MiniBooNE

- MiniBooNE: (anti-)electron appearance experiment
 - run in both neutrino and anti-neutrino mode
 - mineral oil detector

MiniBooNE

Neutrinos and antineutrinos from an accelerator seem to appear!

Radiochemalies

- SAGE and GALLEX experiments
 - detectors built for solar neutrino measurements
 - count neutrino interactions which convert Ga into ⁷¹Ge

30.3 tons of Gallium in an aqueous solution : $GaCl_3 + HCl$

Radioactive Anomalies

- high intensity electron neutrino source introduced to calibrate detectors
- number of neutrino events measured lower on average than expected
- can be interpreted as electron neutrino disappearance

$$P(\nu_e \to \nu_e)$$

electron neutrino disappearance

Summary of Anomalies

- Have several anomalies
- Alone might consider outliers, but together could they be a hint of something?

Experiment name	Туре	Oscillation channel	Significance
LSND	Low energy accelerator	muon to electron (antineutrino)	3.8σ
MiniBooNE	High(er) energy accelerator	muon to electron (antineutrino)	2.8σ
MiniBooNE	High(er) energy accelerator	muon to electron (neutrino)	3.4σ
Reactors	Beta decay	electron disappearance (antineutrino)	1.4-3.0σ (varies)
GALLEX/SAGE	Source (electron capture)	electron disappearance (neutrino)	2.8σ

Reactor Anomaly

- Reanalysis of old reactor data sets show observed events is lower than expectation $P(\bar{\nu}_e \to \bar{\nu}_e)$

Reactor Anomaly

 $P(\bar{\nu}_e \to \bar{\nu}_e)$

• If interpret as oscillations, at different frequency mode than other data

LSND

- LSND: anti-electron neutrino appearance
 - Pion decay at rest source: muon antineutrinos
 - Liquid scintillator detector

sees excess of anti-electron neutrino events

LSND

- Interpret LSND excess as oscillation signature
- oscillations with Δm² ~ 1 eV²
- bigger than SM mass splittings — allows 2 neutrino approximation for fit

oscillation with $\Delta m^2 \sim 1 \text{ eV}^2$

Sterile Neutrino

- How to interpret data?
- Could there be a new neutrino?
- New neutrino cannot interact via the weak force — width of the Z boson tells us only 3 couple weakly

Sterile Neutrino

- How to interpret data?
- Could there be a new neutrino?
- New neutrino cannot interact via the weak force — width of the Z boson tells us only 3 couple weakly

Sterile Neutrino

- How to interpret data?
- Could there be a new neutrino?
- New neutrino cannot interact via the weak force — width of the Z boson tells us only 3 couple weakly

Global Fit

 Put all the data out there together and interpret with 3+1 sterile neutrino model

Global Fit

 Put all the data out there together and interpret with 3+1 sterile neutrino model

Proposal for 3 liquid argon TPCs to look for short baseline oscillations

- Modeling flux and cross section to get correct predicted rate in detector is not easy
- Use ratio of events at different baselines removes some systematic uncertainties

T600

 Proposal for 3 liquid argon TPCs to look for short baseline oscillations

- SBN detectors are liquid argon TPCs
- ability to produced detailed images of neutrino interactions
- aim is to use this information to reduce backgrounds

