

On extensions of IceTop to Veto Air Showers for Neutrino Astronomy with IceCube

IPA, May 4th 2015

Dr. Jan Auffenberg

Content

Part 1:

- Why an extended surface array as veto for CR Part 2:
- An alternative technical solution: Air Cherenkov detectors.

• Where do high-energy cosmic-rays come from?

- Where do high-energy cosmic-rays come from?
- Where do astrophysical neutrinos point?

- Where do high-energy cosmic-rays come from?
- Where do astrophysical neutrinos point?
- R&D of IceVeto
 - -Why

- Where do high-energy cosmic-rays come from?
- Where do astrophysical neutrinos point?
- R&D of IceVeto
 - -Why

-How

Cosmic-Rays: Unknown origin as they get bent in magnetic fields

p, Fe,

Gamma-ray sources:

- not necessarily hadronic
- gammas potentially get absorbed

Cosmic-Rays: Unknown origin as they get bent in magnetic fields

p, Fe,

Gamma-ray sources:

- not necessarily hadronic
- gammas potentially get absorbed

Neutrinos don't get bent or absorbed but hard to detect
Good candidate for cosmic ray source search

Dr. Jan Auffenberg

Cosmic-Rays: Unknown origin as they get bent in magnetic fields

p, Fe,

Gamma-ray sources:

- not necessarily hadronic
- gammas potentially get absorbed

Neutrinos don't get bent or absorbed but hard to detect
Good candidate for cosmic ray source search

Neutrinos point back to their sources !

IceCube today

III. Physikalisches Institut

IceCube today

III. Physikalisches Institut

Observed Neutrino Signatures WIGEGUBE

Neutral Current /Electron Neutrino so called "**shower**"

Observed Neutrino Signatures @ IDE DUBE

Neutral Current /Electron Neutrino so called "**shower**"

CC Muon Neutrino so called "track"

Neutral Current /Electron Neutrino so called "shower" $v_e + N \rightarrow e + X$ $v_x + N \rightarrow v_x + X$

Good Energy resolution

- Good Energy resolution
- Bad angular resolution

CC Muon Neutrino

so called "track"

- Good Energy resolution
- Bad angular resolution

 $v_{\mu} + N \rightarrow \mu + X$

- Good Energy resolution
- Bad angular resolution

CC Muon Neutrino so called "**track**"

Bad Energy resolution

Dr. Jan Auffenberg

Observed Neutrino Signatures 🌒

- Good Energy resolution
- Bad angular resolution

CC Muon Neutrino so called "**track**"

- Bad Energy resolution
- Good angular resolution

Observed Neutrino Signatures 🌒

- Good Energy resolution
- Bad angular resolution
- Bad Energy resolution
- Good angular resolution
- Bad Energy resolution
- Good angular resolution

RNNTHAA

Dr. Jan Auffenberg

IceCube Results: Starting Events () ICECUBE

IceCube Results: Starting Events () ICECUBE

Dr. Jan Auffenberg

Where do the neutrinos come from?

Where do the neutrinos come from?

We need more high energy tracks e.g. from the southern sky!

Dr. Jan Auffenberg

The future extension: IceVeto

We need more high energy tracks e.g. from the southern sky!

Open the southern sky for E < 100 TeV Neutrino induced muon tracks by vetoing signals with coincident air showers

RNITH AACHEN

RNTHAAC

III. Physikalisches Institut

III. Physikalisches Institut

IceVeto Simulation

- - 943 additional modules on surface
 - 99.999% Veto efficiency
 For PE > 4000

IceVeto is a sub-PeV cosmic-ray energy veto with 10⁻⁴ rejection power!

38

Veto efficiency and neutrino flux calculated **based on real data**.

III. Physikalisches

Veto efficiency and neutrino flux calculated **based on real data**.

Veto efficiency and neutrino flux calculated **based on real data**.

41

II. Physikalisches

Veto efficiency and neutrino flux calculated **based on real data**.

- Tank: \$1300 (2007: \$1135) or just a bladder (\$500)
- Tyvec Liner: \$330 (2007: \$300)
- Maybe Glyocol instead of Water: \$5000 (price at the south pole vs. just south pole water \$1000)
- DAQ + PMT: \$2000 (PINGU estimate very likely less)

III. Physikalisches

- Cabling (~3.50 km per module): ~\$4 000 000
- Deployment \$2500 per module or less?

Total: \$10000 - \$15000 per module

Part 2: Air Cherenkov telescopes for the veto (IceAct)

Veto CR to measure astrophysical neutrinos

Requirements:

- extremely good detection efficiency for CR

 high duty cycle
 low energy threshold
- one solution: many surface stations to detect particles on the surface. (limited active volume)

(high duty cycle but high energy threshold)

This idea: Take the atmosphere as active volume and measure the air-Cherenkov light of the air shower.

(low duty cycle but low energy threshold)

Of course the systems could be combined!

IceAct

Ring of Telescopes to cover the sky.

The geometry of a veto with ACTs @ ICECUBE

 $\alpha_{vertical} = 180 - 2\alpha_{ws}$ $\tan \alpha_{ws} = \frac{D_{shallow}}{w/2}$ $\alpha_{vertical} = 37^{\circ}$ $\alpha(D, w) = \alpha_{ds} - \alpha_{ss}$

$$\tan(\alpha_{ss}) = \frac{D_{shallow}}{D_{surface} + w}$$
$$\tan(\alpha_{ds}) = \frac{D_{deep}}{D_{surface}}$$

Projected Cherenkov Cone Size 🏶

IceAct Prototypes in Aachen

61 Pixel Prototype Telescope:

- Thin UV transparent UV lens
- Focus length 502.5 mm
- aperture ~f/1

549.7

- DRS4 based DAQ
- 12° opening angle

502.1 mm

61 Pixel Camera

Assuming:

- an acceptable energy threshold (100TeV)
- acceptable duty cycle
- durability in harsh environments

-interesting in the outer region at 5km and lager?-in combination with stations?-as an infill for source regions?

The instrumentation form 5-7km is ~13000 channels ;a cost equivalent to ~ 200 61 pixel telescopes Goal: Test run of a prototype at South Pole

15.4 mm

Almost no high pulse signals

A lot high pulse signals

31 p.e.

236 p.e.

37 p.e.

- All events with high pulses have a sharp rise time and are nicely coincident.
- The analyses and simulations are ongoing

Prototype for the South Pole

- Carbon tubus light weight
- Glass in front of the Fresnel lens
- robust stand (box)
- DRS4 board based readout
- customized slow control
- 7 channel SIPM camera

DRS4 Evaluation Board (we will use 2)

AC photons from Corsika

Corsika simulates for the Cherenkov photons:

- production height (atmospheric)
- direction (on ground or relative to a detector plane)
- propagation through the atmosphere (absorption)
- range of the wavelength (180-700nm in our case)
- NO particular wavelength/energy

But we can implement Rayleigh $1/\lambda^4$ and Mie scattering (independent of λ)

Implementation of the wavelength () I are a set of the wavelength () are a set of the wavelen

For 100 TeV vertical proton shower, telescope 141m from the shower axis

 production height of the photons at 7-4 km

Thus only 4-1 km above ground!

III. Physikalisches

sin(0)sin(4),

Dr. Jan Auffenberg

-10

Picture on the Lens

x[cm]

y[cm]

100 TeV shower in different distances 🏶 IDEEDUBE

Properties in the Telescope

Vertical 100TeV in 265m distance

Summary

- A surface extension to veto air showers is a promising tool for neutrino astronomy
- high energetic neutrino induced tracks in the in-ice detector are the smoking gun for source detection.
- An extended surface Veto could detect order 10 astrophysical neutrino tracks per year on very small background.
- Possible technologies are charged particle detectors on the ground or Cherenkov light detectors.
- R&D of different technologies are under way

Thanks!

Thanks!

Pole Plan Summary

- We want to bring one prototype ACT telescope to the South Pole and deploy it on top of the ICL (Goal: feasibility study for surface veto)
- We want to trigger at 10Hz and compare the data with IceTop
- When buying 50+ telescopes the cost would be about 5000\$ for one 64 pixel telescope. (The same as an IceTop tank!)
- The duty cycle is an uncertainty. The energy threshold will be at ~100TeV.
- The robustness has to be proven (cold tests are almost finalized)
- The SIPM based camera+ DAQ has other possible applications (large gamma ray telescopes, scintillator based surface particle detectors, thin in-ice multi-channel OMs for smaller holes)

IceAct Prototype with 7 Pixel

- 1-stage transimpedance preamp per SiPM (7 x 4)
- Analogue sum per pixel
- Digitisation using a QDC
- Temperature compensation of SiPM gain included

Charge to digitation

Each pixel consists of one 4channel SiPM module

ICECUBE

Thanks to Johannes schumacher@physik.rwth-aachen.de

Filter against polar light

ICECUBE

PDE of SIPMs

Air Cerenkov Telescopes at South Pole

Fraction of each day with cloud coverage using different edge-finding thresholds t (smaller t is more sensitive to cloud)

© Segev BenZvi

Cost of 50+ Telescopes

- SiPMs: \$1500 (64 6*6 mm² SensL)
- Mechanic: \$800 (Tubus+ Lens+Glass)
- Electronic: \$2000 (DAQ+ Power supply for 64 channels)
- Slow control: \$1250 bzw. \$700 (PC, HDD, Switch,...)

Veto

Signal loss below 2% for a >1 Hit cut !

Single IceTop tank hit probability

The background hit probability is at $2x10^{-3}/\mu s$

