Reactor Neutrinos: Recent Results and Future Prospects

Karsten M. Heeger Yale University

IPA, May 6, 2015

Reactor Antineutrinos

A Tool for Discovery

2012 - Measurement of θ_{13} with Reactor Neutrinos

KamLAND

a story of varying baselines...²

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1956 - First observation of (anti)neutrinos

Reactor Antineutrino Flux and Spectrum

Source

\overline{v}_e from β -decays, pure \overline{v}_e source of n-rich fission products on average ~6 beta decays until stable

Detection

inverse beta decay $\overline{v}_e + p \rightarrow e^+ + n$

Prompt + Delayed Coincidence

$$\overline{v_e} + p \rightarrow e^+ + n$$

prompt event:

positron deposits energy and annihilates (~ns)

delayed event:

neutron thermalizes and captures on Gd

Uncertainty in relative E_d efficiency (0.12%) between detectors is largest systematic.

Karsten Heeger, Yale University

Principle of Relative Measurement of \overline{v}_e Flux

Oscillation Measurements

Daya Bay Reactor Experiment

6 detectors, Dec 2011- Jul 2012 217 days

IPA, May 6, 2015

target mass: 20 ton per AD 192 8"-PMTs photosensors: energy resolution: $(7.5 / \sqrt{E} + 0.9)\%$

Gd-doped

liquid scintillator

Antineutrino Detector

now running with 8 detectors

7

Antineutrino Rate vs Time

Observation of \overline{v}_e Disappearance

Based on 55 days of data with 6 ADs, discovered disappearance of reactor \overline{v}_{e} at short baseline. [PRL **108**, 171803]

Obtained the most precise value of θ_{13} : sin²2 θ_{13} = 0.089 ± 0.010 ± 0.005 [CPC **37**, 011001]

One of Science's breakthroughs of year 2012

Karsten Heeger, Yale University

IPA, May 6, 2015

Energy Spectra

Karsten Heeger, Yale University

Prompt Reconstructed energy [MeV]

Daya Bay Oscillation Results

621 days of data, n+Gd

- far site expected spectra based on near-site observed spectra

- current analysis is designed to be (almost) independent of any reactor flux models

consistent results from nH analysis

Daya Bay Oscillation Results

621 days of data, n+Gd

most precise measurement of $\sin^2 2\theta_{13}$ (6%), and Δm^2_{ee} in the electron neutrino disappearance channel (4%)

Daya Bay Neutrino Oscillation

Neutrino oscillation is energy and baseline dependent

$$P_{i \to j} = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 \frac{L}{E} \right)$$

Daya Bay demonstrates L/E oscillation

A Precision Measurement of θ₁₃

Karsten Heeger, Yale University

Daya Bay Sensitivity Projections

Precision Measurements in $sin^22\theta_{13}$ and Δm^2_{ee}

Daya Bay remains statistically limited through 2015. Will also improve systematics.

Major systematics:

 θ_{13} : Relative + absolute energy, and relative efficiencies

 $I\Delta m_{ee}^{2}I$: Relative energy model, relative efficiencies, and backgrounds

Aim to improve precision of $sin^2 2\theta_{13}$ and Δm^2_{ee} to 3% by 2017.

Beyond 3 Neutrinos?

Neutrino Anomalies - More than 3 v?

Understanding reactor flux and spectrum anomalies requires reactor measurements

Search for Sterile Neutrinos at Daya Bay

sterile neutrinos would appear as additional spectral distortion and overall rate deficit

relative rate+shape comparison

- independent of reactor model, loss of sensitivity at high Δm^2

Probe largely unexplored region at $\Delta m_{41}^2 < 0.1 \text{ eV}^2$

expand to 3+1v fit

Daya Bay Sterile v Results

Daya Bay sets new limits in region of $\Delta m^2_{41} < 0.1 \text{ eV}^2$ Daya Bay consistent with standard 3-flavor neutrino model

Current results are limited by statistics. Expect improvement with the full 5-year data set.

Measurement of Absolute Reactor $\overline{\mathbf{v}}$ Flux

Do we understand the total number of \overline{v} from a reactor?

Effective baseline of Daya Bay: L_{eff} = 573m

• Flux weighted detector-reactor distances of 3 ADs in near sites only.

Effective fission fractions α_k of Daya Bay ²³⁵U: ²³⁸U: ²³⁹Pu: ²⁴¹Pu = 0.586: 0.076: 0.288: 0.050

• Mean fission fractions from 3 ADs in near sites only.

Results based on 3 near site Antineutrino Detectors (ADs)

Daya Bay reactor flux measurement consistent with previous results.

Karsten Heeger, Yale University

Reactor v Spectrum

New Feature in 4-6 MeV Region of Spectrum Spectral feature seen by Daya Bay, Double Chooz, and Reno

Excess events around 5 MeV reactor power correlated & time independent, match IBD events Discrepancy $\sim 2\sigma$ over entire energy range, $\sim 4\sigma$ locally

Karsten Heeger, Yale University

IPA, May 6, 2015

Predicting the Reactor Spectrum

Ab initio approach using nuclear databases of beta branches

Conversion approach of measured beta spectrum

Direct calculation appears to agree with preliminary measurements from recent reactor experiments

Direct calculation of ^{235}U $\beta^{\text{-}}$ spectrum disagrees with BILL measurement

Experimental data needed to understand spectrum and constrain reactor models

From Dwyer, Langford arXiv:1407.1281

Karsten Heeger, Yale University

Eight Beta Branches dominate 5-7 MeV shape

High-energy \overline{v} create edge. Identifies significant decay branch.

Need to improve energy resolution of current detectors (6-8%) to see details.

From Dwyer, Langford

Calculations predict discontinuities in spectrum

Reactor Experiments at Short Baselines

Measurement of Reactor Spectrum

HEU core provides static spectrum of mainly U-235.

Short Distance (<10 m) From Point Source

Compact core (< 1m) avoids oscillation washout

Precision study of the reactor spectra at short baselines

US operates high-powered research reactors

Karsten Heeger, Yale University

Reactor Experiments at Short Baselines

US operates high-powered research reactors

Karsten Heeger, Yale University

PROSPECT

A Precision Oscillation and Spectrum Experiment

PROSPECT Physics

A Precision Oscillation and Spectrum Experiment

2 Detectors

Primary Physics Objectives

- 1. Precision measurement of ^{235}U reactor $\overline{v_e}$ spectrum for physics and safeguards
- 2. Search fort short-baseline oscillation within near detector and between near and far detector

PROSPECT Physics

A Precision Oscillation and Spectrum Experiment

2 Detectors

Primary Physics Objectives

- 1. Precision measurement of 235 U reactor $\overline{v_e}$ spectrum for physics and safeguards
- 2. Search fort short-baseline oscillation within near detector and between near and far detector

A Phased Approach

Near Detector - Phase I

Requirements

- detector close to reactor core
- measurement of spectrum as a function of distance
- high efficiency, uniform detector response

Concept

2.5 ton active volume of liquid scintillator~150 optical segments, thin wall separationdouble-ended readout

Systematic check by moving near detector by ~1/2 detector length

http://prospect.yale.edu arXiv: 1309.7647

PROSPECT Event Detection

Phased PROSPECT Detectors

PROSPECT 0.1 Aug. 2014

PROSPECT 2 Dec. '14/Jan. '15

PROSPECT 20 Early 2015

1m 20 liter LS cell

PROSPECT N×20 Summer 2015*

PROSPECT 2ton Summer 2016* N×20 liter LS segments

* Technically driven schedule

Worldwide Short-Baseline Reactor Experiments

Short-baseline reactor experiments Variety of approaches worldwide to address experimental challenges (background rejection)

Project	Gd	6Li	10B	Segm.	Move Det.	2 Det.
Nucifer (FRA)				0		
Poseiden (RU)				-		
Stereo (FRA)				1	•	
Neutrino 4 (RU)				•	•	
Hanaro (KO)				2	•	•
DANSS (RU)					•	
PROSPECT (USA)				2	•	•
SoLid (UK)				3		
NuLat (USA)				(3	•	

Physics Reach to 3+1 Oscillations Short and intermediate reactor experiments (e.g. Daya Bay and PROSPECT) probe relevant parameter space

Mass Hierarchy and Reactor Neutrinos

mass hierarchy is contained in the spectrum independent of the unknown CP phase

Δm_{21}^2 is only 3% of $|\Delta m_{32}^2|$

Reactor neutrinos are a tool for discovery.

Reactors are flavor pure sources of \overline{v}_e

Current reactor experiments (L~1-2km) provide precision data on θ_{13} , and reactor antineutrino flux and spectra. Daya Bay flux measurement is consistent with previous short-baseline measurements (~5% deficit). Positron spectrum appears inconsistent with current predictions in 4-6 MeV region.

Short-baseline (L~10m) experiments (e.g. PROSPECT) offer opportunities for **precision studies of reactor spectrum** and a definitive search for **short-baseline oscillation** and **sterile neutrinos**.

Medium-baseline experiments (L~60km) (e.g JUNO, RENO-50) are technically demanding but may offer <1% precision oscillation physics and a window to the mass hierarchy.

Acknowledgements

Thanks to Daya Bay, JUNO, and PROSPECT collaborators for materials

JUNO Collaboration

)
ung U. Tsinghua U U. UCAS J. USTC Wuhan U. Wuyi U. Xi'an JT U
M -

Similar results from Double Chooz and RENO collaborations.

Many new experimental ideas. Apologies for not being able to cover all experiments.