Backgrounds from Cosmogenic Activation in DM-lce

Walter C. Pettus on behalf of the DM-Ice collaboration University of Wisconsin – Madison

IPA 2015 Madison, WI 4 – 6 May 2015

Tension of Experimental Results

Persistent Signal

Resolution hidden in Astrophysics, Particle Physics, Instrumental Effects, or Background? Walter C. Pettus

A World of Dark Matter Searches

DM-ICE17 Experiment

(2x) 8.5-kg NaI(TI) modules

- Installed Dec 2010
- Data run from June 2011

Goals:

- Demonstrate the feasibility of deploying and operating NaI(TI) detectors in the Antarctic Ice for a dark matter search
- In situ measurement of the radiopurity of the Antarctic ice / hole ice at 2450 m depth
- Study environmental stability (see Z. Pierpoint, this session)
- Study the capability of IceCube to veto muons

(see A. Hubbard, this session)

Cosmogenic Activation Hazards

Cosmic Ray Exposure Timeline

Full Detector Component History

- F_{tot} Relative cosmic ray neutron flux (scaling from sea level)
 - Long periods of low-level exposure during storage and construction
 - Punctuated exposure from flight • shipment
- "Cumulative Activation" Time-integrated neutron flux scaling
 - Different detector components have different exposure histories
 - Two DM-Ice17 detectors have different deployment times

Cosmic Ray Exposure Timeline

Activation Calculation

Calculate sea-level activation:

- Identify isotopes of interest from activation code (ACTIVIA)
- Validate cross section against libraries (TENDL, HEAD) •
- Integrate over cosmic ray neutron flux

- Scale isotope production by exposure history
- Allow decay governed by known half-lives

10³

Cosmogenic Decay Peaks

High-Energy Spectrum

Examining changing spectrum at high-energy

- Demonstrates presence of cosmogenic decays
 - ⁵⁴Mn (t_{1/2} = 312 days) and
 ⁵⁸Co (t_{1/2} = 71 days)
- Reveals decay of intrinsic contaminants
 - ⁶°Co (t_{1/2} = 5.3 yr) in steel pressure vessel
 - Maximally broken ²³²Th-chain in steel

Low-Energy Spectrum

Low-energy spectrum has fewer features, but all cosmogenic:

- 125 I (t_{1/2} = 59 days)
 - only low-energy features
- ¹¹³Sn (t_{1/2} = 115 days) and
 ^{121m}Te (t_{1/2} = 164 days)
 - Constrained by peaks at 200 – 700 keV

Provides feedback to energy resolution for simulation

 Significant overestimate for both ¹²⁵I peaks

DM-ICE250 Experimental Program

DM-ICE250 Experimental Program

DM-ICE250S Cosmogenics

Event rate one month after deployment

- Multiple strong cosmogenic calibration lines
- Significant contributions to 2 6 keV region of interest

Cosmogenic contribution to ROI:

- ¹²⁶I (t_{1/2} = 13 days)
 - lead contribution at deployment
- ¹¹³Sn (t_{1/2} = 115 days)
 - dominates rate over physics run

Cosmogenic Mitigation

"Exposure budget" for ¹¹³Sn in DM-Ice250S:

- 40% reduction is "easy"
- Major contributions remain from NZL-McM flight and South Pole

Further reductions:

- 50% reduction in low-altitude
 NZL-McM flight (10% of total)
- 90% reduction in South Pole exposure from tunnel storage

DM-Ice Collaboration

Yale University

Reina Maruyama, Karsten Heeger, Kyungeun Lim, Estella de Souza

University of Wisconsin – Madison

Francis Halzen, Michael DuVernois, Antonia Hubbard, Albrecht Karle, Matt Kauer, Walter Pettus, Zachary Pierpoint

University of Sheffield

Neil Spooner, Vitaly Kudryavtsev, Anthony Ezeribe, Frederic Mouton, Matt Robinson, Sam Telfer, Lee Thompson, Dan Walker

Boulby Underground Science Facility Sean Paling

Fermilab

Lauren Hsu

University of Illinois at Urbana-Champaign Liang Yang University of Alberta Darren Grant

Pennsylvania State University

and a state of the second s

Doug Cowen, Ken Clark

NIST-Gaithersburg Pieter Mumm

University of Stockholm Chad Finley, Per Olof Hulth, Klas Hultqvist, Chistian Walck

DigiPen Charles Duba, Eric Mohrmann

SNOLAB Bruce Cleveland

Walter C. Pettus

IPA 2015