Phased Arrays for Radio Detection of UHE Neutrinos arXiv:1504.08006

Keith Bechtol w/ Abigail Vieregg and Andres Romero-Wolf IPA 5 May 2015

UHE Neutrinos

UHECRs w/ E > 10^{20} eV

T = 2.7 K CMB

"Guaranteed" production of UHE neutrinos w/ E > 10¹⁸ eV + prompt emission at sources

See plenary talk from Abigail Vieregg

Waiting for a broadband (100 to 1200 MHz) impulsive (few ns) wavefront to cross the detector

Waiting for a broadband (100 to 1200 MHz) impulsive (few ns) wavefront to cross the detector

Waiting for a broadband (100 to 1200 MHz) impulsive (few ns) wavefront to cross the detector

Romero-Wolf et al. 2014

Trigger threshold is set by rate that data can be acquired Most triggered events are uncorrelated thermal noise background

Coherence Map

Can **beam-forming in hardware** achieve a lower (more sensitive) trigger threshold relative to simple coincidence trigger

16 antenna phased array example Co-located but distinct "pointing" and "trigger" arrays

16 antenna phased array example Co-located but distinct "pointing" and "trigger" arrays 30m 30m **Ice Surface** Construct an effective high-gain antenna by phasing multiple low-gain antennas $G_{eff} = 10 \log_{10} (N \times 10^{G/10})$ 30m Pointing Array Trigger (Both Polarizations) Array Ĵ0.5m (Vertical Polarization) 30m

Phased Array Concept

Triggering on beams rather than waveforms from individual antennas

Phased Array Concept

Compact trigger array results in wide beams Can attain good zenithal coverage with small number of trigger channels

Beam pattern for one trigger channel 200 MHz (16 antenna example)

Simulations

Consider 10 stations in Greenland as concrete example

For widely spaced stations, acceptance scales linearly with number of stations

Station Configurations

- 1. 16 antennas unphased (E-field threshold = $0.15 \text{ mV} \text{ m}^{-1}$, 100 to 800 MHz)
- 2. 16 antennas phased (lower by factor 4)
- 3. 400 antennas phased (lower by factor 20)

$$\begin{array}{ll} \text{Volumetric} \\ \text{Acceptance} \\ \text{Areal} \\ \text{Acceptance} \end{array} & V\Omega = \frac{4\pi V_{\text{sim}}}{N} \times \sum_{i} \left(p_{\text{Earth},i} \times p_{\text{detect},i} \times \frac{\rho_{i}}{\rho_{\text{water}}} \right) \end{array}$$

See appendix of arXiv:1504.08006 for details

Event Geometry Cartoon

Radio antenna

station

~100 m deep <u>firn</u> layer (ray bending)

Incoming neutrino

Cone of coherent radio emission strongest at angles ~56 deg Polarized in radial direction

> ~3 km solid ice (rays travel ~ straight)

Reflections off bottom

Askaryan Emission

Use simple analytic parametrization of Askaryan emission from Lehtinen et al. 2004

Ray-tracing Library

Ray-tracing Library

Distance to Interaction Vertex

Triggered events in three station configurations

1 PeV

1000 PeV

Observation Angle

Triggered events in three station configurations

1 PeV

1000 PeV

Primary Neutrino Zenith Angle

Triggered events in three station configurations

1 PeV

1000 PeV

Volumetric Acceptance

Acceptance for radio arrays at trigger level, IceCube acceptance at analysis level

Model Comparison

Model Comparison

Station Configuration	Power Law	Power Law	Optimistic	Pessimistic
		with Cutoff	Cosmogenic	Cosmogenic
16-antenna	0.9	0.0	7.7	2.3
16-antenna, phased	3.8	0.1	19.6	6.0
400-antenna, phased	18.4	2.2	52.9	15.6

Key Points and Questions

Key Points

- Trigger and pointing arrays can be de-coupled (less sensitive to wavefront curvature, ice effects, etc.)
- Radio technique could potentially reach the PeV scale if a sufficient number of antennas are phased together
- Increase event rate over all energies with relatively modest hardware modifications (scalability of radio technique, energy calibration with optical Cherenkov techniques)

Questions

- Reconstructing events with lower signal-to-noise per antenna?
- When phasing more antennas, how would beams be distributed? More extensive hardware modifications?