Status of Himalyan Gamma Ray Observatory (HiGRO)

(VHE Gamma-ray Astronomy in India)

B S Acharya Tata Institute of Fundamental Research, Mumbai, INDIA acharya@tifr.res.in

AIP-2015-UW-Madison, USA, May 4, 2015

Himalayan Gamma Ray Observatory, HiGRO @ Hanle

- > Hanle: a high altitude location in Himalayas
- Cost effective way of reducing energy threshold of atmospheric Cherenkov telescope

Higher Cherenkov photon density and less atmospheric attenuation of Cherenkov photons at higher altitudes

Lateral distribution from simulations

Copyright © Compare Infobase Pvt. Ltd. 2003

Himalayan Gamma Ray Observatory (HiGRO) Collaboration between BARC, IIA, TIFR and SINP

Located at Hanle in Himalayas

 (Lat: 32º 46' 46" N; Long: 78º 57' 51" E; and Altitude : 4270 m
 Located at the base camp of Indian Astronomical Observatory
 260 spectroscopic nights/year

Kashmir Region

 Phase 1 : HAGAR (non-imaging) (array of 7 small telescopes)
 Phase 2 : MACE (Imaging) (21m diameter single telescope)

High Altitude GAmma Ray (HAGAR) Telescope Array

- > An array of 7 telescopes based on wavefront sampling technique
- > Arrival time of Cherenkov shower front recorded at various locations in Cherenkov pool using distributed array of telescopes
- Completely indigenously designed and assembled Civil and mechanical : IIA, Optics and DAQ : TIFR

> 7 telescopes, each with 7paraaxially mounted glass parabolic mirrors of diameter 0.9 m

> f/D ~ 1 Field of view : 3⁰ FWHM

Photonis UV sensitive phototube (XP2268B) at the focus of each mirror

2005

First HAGAR Telescope at Hanle

HAGAR Telscope Array

Installation during 2005-2008 IIA & TIFR Fabricated at Bangalore by IIA Optical system + DAQ by TIFR

Data Acquisition and Telescope Control System

CAMAC based => VME based + 8 ch Acqiris Digitiser

Performance Parameters of HAGAR

1. Trigger threshold : 17.5 photo-electrons/telescope

2. Trigger rate : Protons 9.2 Hz, α particles 3.7 Hz, Electrons 0.11 Hz Total trigger rate ~ 13.0 Hz

3. Energy threshold :

208 GeV for vertical showers For ≥4 telescopes triggering

- 4. Expected gamma ray rate from Crab like sources = 6.3/min
- 5. Collection area = $3.2 \times 10^4 \text{ m}^2$
- 6. Sensitivity : $1.2\sigma/\sqrt{(hour)}$ for Crab like sources
- L. Saha et al. , Astroparticle Physics Vol. 42, p. 33-40, 2013

HAGAR Observation Summary

Regular observational runs commenced in September, 2008

Galactic sources

Object	ON (Hours)	OFF (Hours)
Crab	202.4	189.3
Geminga	126.3	76.1
Fermi pulsars J0358+3208 J0633+0632 J1846+0919 J2055+25 PSR0007+73	179.6	70.4
LSI+61 303	44.9	47.7
MGRO J2019+37	30.2	29.45

Extragalactic sources

Object	ON (Hours)	OFF (Hours)
Mrk 421	196.1	227.1
1ES2344+514	114.0	131.0
Mrk 501	121.5	127.1
1ES1218+304	47.7	56.2
BL Lac	40.3	40.3
3C454.3	15.3	15.3
1ES1959+650	6.9	9.5
H1426+428	22.3	23.3
M87	2.0	2.7

Calibration runs: 448.22 Hours

Total observation duration (September, 2008 – September, 2013) : 2,706.62 hrs

Status at Hanle site

240 KW Solar Power Plant for MACE

HAGAR

Subsystems of the MACE telescope

Mechanical Structure (150T)

- # Mirror Panels (1564/4)
- # Mirror Alignment System
- # Bull Gear & Drive System
- # Modular Camera Electronics
- **# Instrumentation Shelters**
- # Data Connectivity
- # Data Archive

R. Koul et al. NSGRA-2013

Assembly status in Jan, March & May 2013

Transportation requirements (size < 5mx3m)</pre>

21m MACE PROOF ASSEMBLY PROGRESS AT AP&SD/ECIL ON 15.05.2014

Spot-size distribution status after (1310 mirrors)

Spot Size (mm)

Alignment at mirror and at panel side procedure

06/19/2013

aligning 2 panels in a day, to be speeded up

Torque behind the mirror facets and behind the panel

MACE Camera

- 1088 PMTs (ETE 9117 WSB) with a uniform pixel resolution 0.125 deg.
- 16 PMTs are arranged in a Camera Integrated Module (CIM).
- PMTs are powered by Voltage Divider Network (VDN).
- The socket, VDN and a preamplifier assembly is housed in a metallic enclosure.
- Programmable HV required for PMT gain matching is mounted close to PMT tubes.

Picture courtesy: ED

Status: Integration of fully assembled 4 CIM modules with DC, CCC, SLTG, Console, Data Archive, Master Clock is completed. Performance evaluation in progress

Overall architecture Block diagram of camera electronics

Trigger generation, **MACE** telescope – two stage, two phase pattern based coincidence

First Level Trigger -

effective coincidence window ~ 5-6 ns
pe threshold ~ 3-5 photo-electrons
Selectable tight cluster pattern of 3 to 6 pixels
Nearest neighbour FULL trigger and partial border triggers,
Border strength - STRONG, MEDIUM, WEAK
Lower power, lower volume. Allows to compensate for PMT transit time variation with respect to high voltage bias

Revised time-line

- # Review of Telescope Structure assemby: completed on June11-12, 2014
- # Alignment & Drive tests: from 15 June 2014
- # Dismantling of structure : 1 July 2014
- # Transportation to Hanle : 1 Aug 2014
- # start Installation at Hanle: 1 Sept 2014
- # finish Installation: by mid 2015
- # proposed one more similar unit for stereoscopic observations

