Toward the Identification of the Cosmic Neutrino Origin

Kohta Murase Institute for Advanced Study → Pennsylvania State University

IPA 2015 @ Madison

HE Neutrino Astrophysics Started

- Easy to see: mostly isotropic, extragalactic events
- Galactic halo? absence of sub-TeV/sub-PeV γ rays

(KM, Ahlers & Lacki 13 PRDR, Ahlers & KM 14 PRD)

Open Questions

- Cosmic v origin?
 starbursts
 galaxy clusters/groups
 active galaxies
 gamma-ray bursts
 supernovae/pulsars...
- pp or pγ?
- UHECR connection?
 Waxman-Bahcall bound?
 nucleus-survival bound?
- γ-ray connection?
- Flavor ratios?
- New physics?

Cosmic-Ray Reservoirs

pp Neutrinos from CR Reservoirs

- CR reservoirs explain >0.1 PeV neutrino data with a few PeV break
- Must largely contribute to diffuse γ-ray bkg. (perhaps "common" origins?)

- Strong predictions: spectral index s<2.2, >30% to the diffuse γ -ray bkg.

pp Neutrinos from CR Reservoirs

- CR reservoirs explain >0.1 PeV neutrino data with a few PeV break
- Must largely contribute to diffuse γ-ray bkg. (perhaps "common" origins?)

- Strong predictions: spectral index s<2.2, >30% to the diffuse γ -ray bkg.

- If steep (s~2.5)→ ruling out a single origin & another component is required GRB (KM & loka 13 PRL), AGN (Kimura, KM & Toma 15 ApJ), Galactic (Ahlers & KM 14 PRD)

py Neutrinos from GRBs and AGN

Standard jet models as the cosmic v origin: ruled out by multi-messenger obs.

- Classical GRBs: constrained by stacking analyses <~ 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹
- Blazars: spectral shape (KM, Inoue & Dermer 14), point-source limits (KM & Waxman 15)

- "hidden neutrino sources?" (invisible in γ rays but maybe in X rays or optical)
- Uncertain but multi-messenger data should help (need theoretical work)

Muon Neutrino Constraints

• Present data give limits: $n_0 > 10^{-8} - 10^{-5} \text{ Mpc}^{-3}$

$$E_{v} L_{Ev} < 10^{41} - 10^{43} \text{ erg/s}$$

• Testing CR reservoirs: need a detector like IceCube-Gen2

Testing CR Reservoir Models w. Neutrinos

Starburst galaxies: $n_0 \sim 10^{-5}$ Mpc⁻³ (calorimetric or L_{γ} - L_{IR} corr.) Galaxy clusters: $n_0 \sim 10^{-5}$ Mpc⁻³, $n_0 \sim 10^{-6}$ Mpc⁻³ (massive clusters)

Good chances to see neutrinos if CR reservoir models are correct

Testing CR Reservoir Models w. γ **Rays**

- Fermi results $\rightarrow \gamma$ -ray spectra should be hard (s<2.1-2.2)
- Nearby CR reservoirs should be seen as hard multi-TeV γ-ray sources
- Deep observations by future TeV γ-ray detectors (ex. CTA) is crucial

y-ray Limits Challenge the Dark Matter Scenario

ex. Feldstein et al. 13, Esmaili & Serpico 13, Many authors tried to explain by DM...

> 10^{-5} IceCube 2014 $DM \rightarrow v_e + v_e$ (12%) Fermi 2014 $DM \rightarrow b+b$ (88%) 10⁻⁶ E² Φ [GeV cm⁻² s⁻¹ sr⁻¹. (similar results in other models that are proposed) 10⁻⁷ total v total γ 10⁻⁸ extragalactic v Galactic primary extragalactic γ 10⁻⁹ KASCADE KM, Laha, Ando & Ahlers 15 10⁻¹⁰ 10³ 10² 10^{1} 10⁶ 10⁷ $10^4 \quad 10^5$ 10^{0} 10^{8} E [GeV]

Bai+ 14, Higaki+ 14, Fong+ 15, Rott+ 15

Galactic: $\gamma \rightarrow$ direct (w. some attenuation), $e^{\pm} \rightarrow$ sync. + inv. Compton

Extragalactic \rightarrow EM cascades during cosmological propagation

DM Scenarios can be Killed by IceCube-Gen2

 $\tau_{dm} \sim a \text{ fewx10}^{27} \text{ s}$

flux ∝ M_{dm}/τ_{dm}/D² → nearby DM halos (galaxies & clusters) give us a critical test

Again, IceCube-Gen2 is crucial

Summary

What is the origin of cosmic v signals? Implications:

mostly isotropic & diffuse TeV-PeV γ -ray limits \rightarrow extragalactic pp scenarios: s<2.2 & >30% to the diffuse sub-TeV γ -ray bkg. s~2.5 \rightarrow another component below ~100 TeV? p γ scenarios: not explained by classical GRBs & blazars \rightarrow hidden sources (ex. low-power GRBs/AGN)?

Requests for future:

IceCube-Gen2: $n_0>10^{-5}$ Mpc⁻³, testing CR reservoirs & PeV DM Fermi: ~2-3 improvements can rule out or support pp scenarios & PeV DM CTA: CR reservoirs as s<2.2 γ -ray sources, DM emission from galaxy clusters HAWC/air-shower arrays: γ -ray counterparts if significant Galactic contributions Importance of theories: "multi-messenger" approach (ex. AMON) especially for p γ scenarios (ex. low-power GRBs w. hard X-ray sky monitors)

Astrophysical "Isotropic" Neutrino Background – Mean Diffuse Intensity

diffuse v intensity of extragalactic sources (cf. supernova v bkg.) \leftarrow consistent w. isotropic distribution

Most contributions come from unresolved distant sources, difficult to see each

Cosmic-Ray Accelerators (UHECR candidate sources)

Cosmic-ray Reservoirs

- <u>γ-ray bursts</u>

ex. Waxman & Bahcall 97, KM et al. 06 after Neutrino 2012: KM & Ioka 13, Laha et al. 13, Winter 13 Cholis & Hooper 13, Liu & Wang 13

- Active galactic nuclei

ex. Stecker et al. 91, Mannheim 95 after Neutrino 2012: Kalashev, Kusenko & Essey 13, Stecker 13, KM, Inoue & Dermer 14, Dermer et al. 14 Starburst galaxies (not Milky-Way-like) ex. Loeb & Waxman 06, Thompson et al. 07 after Neutrino 2012: KM, Ahlers & Lacki 13, Katz et al. 13, Liu et al. 14, Tamborra, Ando & KM 14, Anchordogui et al. 14

- Galaxy groups/clusters

ex. Berezinsky et al. 97, KM et al. 08 after Neutrino 2012: KM, Ahlers & Lacki 13

Cosmic-Ray Accelerators (UHECR candidate sources)

Cosmic-ray Reservoirs

Cosmic-Ray Accelerators (UHECR candidate sources)

Cosmic-ray Reservoirs

Cosmic-Ray Accelerators (UHECR candidate sources)

 $E^2 \Phi$

Cosmic-ray Reservoirs

CR

E_v ~ 0.04 E_p: PeV neutrino ⇔ 20-30 PeV CR nucleon energy

pp Neutrinos from Cosmic-Ray Reservoirs

- v data are consistent w. pre-discovery calculations (within uncertainty)

- CR diffusive escape naturally makes a v spectral break (predicted)
- Uncertain (ex. how $E_p^{max} > E_{knee}$?)

but models look simple and natural

How to Test?: Multi-Messenger Approach

$$\pi^0 \rightarrow \gamma + \gamma$$

 $p + \gamma \rightarrow N\pi + X \qquad \pi^{\pm}:\pi^{0} \sim 1:1 \rightarrow \mathsf{E}_{\gamma}^{2} \Phi_{\gamma} \sim (4/3) \mathsf{E}_{\nu}^{2} \Phi_{\nu}$ $p + p \rightarrow N\pi + X \qquad \pi^{\pm}:\pi^{0} \sim 2:1 \rightarrow \mathsf{E}_{\gamma}^{2} \Phi_{\gamma} \sim (2/3) \mathsf{E}_{\nu}^{2} \Phi_{\nu}$

>TeV γ rays interact with CMB & extragalactic background light (EBL) $\gamma + \gamma_{\text{CMB/EBL}} \rightarrow e^+ + e^-$ ex. $\lambda_{\gamma\gamma}(\text{TeV}) \sim 300 \text{ Mpc}$ $\lambda_{\gamma\gamma}(\text{PeV}) \sim 10 \text{ kpc} \sim \text{distance to Gal. Center}$

Fate of Extragalactic Gamma Rays

First Multimessenger Constraints from "Measured" Fluxes

• $s_v < 2.1 - 2.2$ (for extragal.), $s_v < 2.0$ (Gal.) (cf. Milky Way: $s_v \sim 2.7$)

- contribution to diffuse sub-TeV γ: >30%(SFR evol.)-40% (no evol.)
- IceCube & Fermi data can be explained simultaneously

Implications for Further Neutrino Studies

Shower searches at lower energies offer the fastest way to distinguish between the neutrino spectra ex. if $s_v > 2.3 \rightarrow pp$ scenarios will have a trouble

So measurements of s_v at low energies have been waited for

New Results Announced in 2014

IceCube 1410.1749

Southern sky

 10^2

LE extension down to <10 TeV

2.46 is too steep & 10^{-7} is too high $\rightarrow 1$. Galactic components at LE? **2. favoring pγ scenarios?**

It may be premature: wait for more results from shower analyses....

Implications for Further Gamma-Ray Studies

Contributing >30-40% of diffuse sub-TeV gamma-ray flux \rightarrow improving and understanding the Fermi data are crucial

Galactic Contributions?

So far, more papers about Galactic sources (a fraction of vs are explained except Galactic halo models)

Importance of TeV-PeV y-ray Limits on Galactic Sources

Airshower arrays have placed diffuse γ-ray limits at TeV-PeV

Isotropic limits (Galactic halo CR model)

$$n_{\rm H} = (10^{-4.2 \pm 0.25}) (R/\tilde{R}_{\rm vir})^{-0.8 \pm 0.3}$$

Existing old TeV-PeV γ-ray limits are close to predicted fluxes
 → Need deeper TeV-PeV γ-ray observations (relatively not expensive)

ℜ Fermi γ-ray data imply s_v < 2.0 → support extragalactic scenarios

Importance of TeV-PeV y-ray Limits on Galactic Sources

Airshower arrays have placed diffuse γ-ray limits at TeV-PeV

Galactic Plane (ex. diffuse Galactic cosmic rays, supernova remnants)

Joshi+ 14

Anchodogui+ 14

- Existing TeV-PeV γ-ray limits are close to predicted fluxes
- No significant overlap between vs and search regions
- Need deeper TeV-PeV γ-ray obs. in the Southern Hemisphere

WANTER WANTER

Diffuse or Associated

Source identification may not be easy (ex. starbursts: horizon of an average source ~ 10 Mpc)
promising cases: "bright transients (GRBs, AGN flares)", "rare bright sources (powerful AGN)", "Galactic sources"
Not guaranteed but remember the success of γ-ray astrophysics

Questions for Future

- Spectral features: is the possible v spectral break/cutoff real?
- Flavor ratio: consistent w. 1:1:1? (more data!)
 0.57:1:1 (μ damp), 2.5:1:1 (neutron decay), others (exotic), looking for τ-appearance, anti-v_e Glashow-resonance at 6.3 PeV etc.
- Cross-corr. & auto-corr. (much more data! \rightarrow 10xIceCube?)
- Connection w. ultrahigh-energy cosmic-ray origins?
 PeV v ⇔ ~20-30 PeV p or ~(20-30)A PeV nuclei (cf. "knee"~3 PeV)

Is $E_v^2 \Phi_v \sim 10^{-8}$ GeV cm⁻² s⁻¹ sr⁻¹ coincident with the WB bound? a. UHECR sources have $s_{CR} \sim 2 \& f_{mes} \sim 1$

b. UHECR sources have s_{CR}>>2 & f_{mes}<<1 (maybe better if observed UHECRs are heavy nuclei)

injected/confined CR spectra ≠ escaping CR spectra

An Example of Calculation: Gamma-Ray Burst Jets

Classical Long Gamma-Ray Bursts (pγ)

numerical results w. detailed microphysics

- GRBs are special: stacking analyses
 duration (~10-100 s) & localization → atm. bkg. is practically negligible
- IC40+59 limits: <~ 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹ (and stronger w. IC79+86)
 → Classical GRBs are not the main origin of observed PeV neutrinos

Recent IceCube Limits on Prompt v Emission

GRB Early Afterglow Emission

 Most vs are radiated in ~0.1-1 hr (physically max[T, T_{dec}]) Afterglows are typically explained by external shock scenario •But flares and early afterglows may come from internal dissipation

Flares – efficient meson production ($f_{p\gamma} \sim 1-10$), maybe detectable External shock – not easy to detect both vs and hadronic γ rays

Exceptions: Low-Power Gamma-Ray Burst Jets

 Low-luminosity (LL) & ultralong (UL) GRB jets are largely missed may explain IceCube v data without violating stacking limits
 Uncertain so far, but relevant to understand the fate of massive stars → Better (next-generation) wide-field sky monitors are required

0 0

Active Galactic Nuclei (AGN)

FR-II radio galaxy Flat spectrum radio quasar (FSRQ) Steep spectrum radio quasar (SSRQ)

py Neutrinos from Active Galactic Nuclei

- Considered as powerful HE ν emitters for more than 20 years
- Popular candidate sources of ultrahigh-energy cosmic rays

0 0

Difficult to explain sub-PeV v flux since v spectra are too hard
 → Standard inner jet model has difficulty in explaining v data

 $f_{p\gamma} \approx \hat{n}_{\rm BL} \sigma_{p\gamma}^{\rm eff} r_{\rm BLR} \simeq 5.4 \times 10^{-2} L_{\rm AD,46.5}^{1/2} r_{\rm BLR} \approx 10^{17} \text{ cm } L_{\rm AD,45}^{1/2}$ **cf.** $f_{p\gamma} \approx \hat{n}_{\rm EBL} \sigma_{p\gamma}^{\rm eff} d \simeq 1.9 \times 10^{-4} \hat{n}_{\rm EBL,-4} d_{28.5}$

Blazar Sequence

KM, Inoue & Dermer 14

Blazars as Powerful EeV v Sources

- Quasar-hosted blazars: efficient v production, UHECR damped
- BL Lac objects: less efficient v production, UHE nuclei survive

- PeV-EeV v: py w. BLR & dust-torus photons \rightarrow unique shape

- Strong prediction: cross-corr. w. known <100 bright quasars
- UHECR norm. \rightarrow below WB but EeV v detectable by ARA

Starburst/Star-Forming Galaxies

- High-surface density M82, NGC253: $\Sigma_g \sim 0.1 \text{ gcm}^{-3} \rightarrow n \sim 200 \text{ cm}^{-3}$ high-z MSG: $\Sigma_g \sim 0.1 \text{ g cm}^{-3} \rightarrow n \sim 10 \text{ cm}^{-3}$ submm gal. $\Sigma_g \sim 1 \text{ gcm}^{-3} \rightarrow n \sim 200 \text{ cm}^{-3}$
- Many SNRs known CR accelerators

energy budget
$$Q_{\rm cr} \sim 8.5 \times 10^{45} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} \varrho_{\rm SFR,-2}$$

advection time
$$t_{\rm esc} \approx t_{\rm adv} \approx h/V_w \simeq 3.1 \ {\rm Myr} \ (h/{\rm kpc}) V_{w,7.5}^{-1}$$

pp efficiency

$$f_{pp} \approx \kappa_p \sigma_{pp} nct_{esc} \simeq 1.1 \ \Sigma_{g,-1} V_{w,7.5}^{-1}(t_{esc}/t_{adv})$$

Starburst/Star-Forming Galaxies (pp)

Tamborra, KM & Ando 14 JCAP

- Consistent w. obs. & a PeV break was predicted!
- How can CRs get accelerated above 100 PeV?

Requirements in Star-Forming Galaxies

 ~20% of diffuse γ bkg. → s_v~2 but including SF-AGN can help (<~50 % can be explained)
 E_{knee}~E_p^{max} (rather than E_p^{esc})
 → cutoff at 100 TeV transients powerful than SNRs?

Speculations about Accelerators

Galaxy Groups and Clusters

- intracluster gas density
 n~10⁻⁴ cm⁻³, a fewx10⁻² cm⁻³ (center)
- Many CR accelerators AGN, galaxy mergers, galaxies
 - accretion shocks $\varepsilon_n^{\text{max}} \approx (3/20)(V_s/c)eBr_{\text{sh}} \sim 1.2 \text{ EeV } B_{-6.5}V_{s,8.5}M_{15}^{1/3}$

energetics

$$Q_{\rm cr} \sim 1.0 \times 10^{47} \text{ erg Mpc}^{-3} \text{ yr}^{-1} \epsilon_{\rm cr,-1} L_{\rm ac,45.5} \rho_{\rm GC,-5}$$

 $Q_{\rm cr} \sim 3.2 \times 10^{46} \text{ erg Mpc}^{-3} \text{ yr}^{-1} \epsilon_{\rm cr,-1} L_{j,45} \rho_{\rm GC,-5}$

$$f_{pp} \approx \kappa_p \sigma_{pp} nct_{\text{int}} \simeq 0.76 \times 10^{-2} \ g\bar{n}_{-4} (t_{\text{int}}/2 \text{ Gyr})$$

diffusion time

 $t_{\rm diff} = t_{\rm inj}$

$$t_{\rm diff} \approx (r_{\rm vir}^2/6D) \simeq 1.6 \,\,{\rm Gyr} \,\,\varepsilon_{p,17}^{-1/3} B_{-6.5}^{1/3} (l_{\rm coh}/30 \,\,{\rm kpc})^{-2/3} M_{15}^{2/3}$$
$$\Rightarrow \epsilon_p^b \approx 51 \,\,{\rm PeV} \,\,B_{-6.5} (l_{\rm coh}/30 \,\,{\rm kpc})^{-2} M_{15}^2 (t_{\rm inj}/2 \,\,{\rm Gyr})^{-3}$$

Galaxy Clusters and Groups (pp)

KM et al. 08 ApJL

- Consistent w. obs. & a PeV break was predicted!
- No firm gamma-ray detection, Normalization?

AGN in Galaxy Clusters and Groups

Gamma-Ray Limits?

Galactic Halo

※ PeV γ rays should be expected (~60 % come from <26 kpc or higher if CR dist. has gradient)

Fermi Bubbles

Ref. Ahlers & KM 13, Razzaque 13, Lunardini+ 13

up to 7 (among 28) can be associated w. Fermi bubbles

Contributions from Fermi Bubbles?

- consistent w. $\Gamma=2.2$ (while the cutoff is indicated by Fermi)
- testable w. future gamma-ray detectors (ex. CTA, HAWC)

Neutrino Constraints on Dark Matter Decay

- Neutrino bound is very powerful at high energies
- Cascade γ-ray bound: more conservative/robust at high m_{dm}

Secret Neutrino Interactions

Majorna neutrino self-interactions via a scalar

Constraints on Self-Interactions

- An example that IceCube can be used for testing nonstandard interactions
- Can be more powerful than laboratory tests