

A Precision Reactor Oscillation and Spectrum Measurement

Karin Gilje PROSPECT Collaboration IPA 2015

Reactor Anomaly

- A deficit of the predicted reactor flux.
- An excess in events around 5 MeV.

Reactor Spectrum Models

- Searches for reactor antineutrinos are typically based on inverse beta decay.
- Reactor Fuels are mixtures of Uranium 235, Uranium 238, Plutonium 239, and Plutonium 241.
- The total emitted spectrum is the fractional sum of the modeled spectra.

Vogel et al, arXiv:1503.01059v2 (2015)

Possible Solution #1

- Inaccurate Spectra Models.
 - Ab initio approach
 - Calculate spectrum branch-by-branch using beta branch databases.
 - Conversion approach
 - Measure beta spectrum
 - Work backwards to $\bar{\nu}_e$ spectrum

Possible Solution #2

- The existence of sterile neutrinos (v_s)
 - LSND, MiniBooNE and Gallium anomalies would agree.
 - Tension with v_{μ} disappearance measurements.

Karin Gilje

Problem Summary

- We see a deficit in the expected reactor flux
- We see a deviation from the expected reactor spectrum shape.
- Two possible solutions:
 - Incomplete picture of the spectrum.
 - Sterile neutrino exists.

PROSPECT

- Goal 1: A precise measurement of the HFIR (High Flux Isotope Reactor) spectrum.
- Goal 2: Perform a sterile neutrino search with interest in Δm² around 1.0 eV².

PROSPECT Phase I baseline PROSPECT Phase II baseline

PROSPECT

- Goal 1: A precise measurement of the HFIR (High Flux Isotope Reactor) spectrum.
- Goal 2: Perform a sterile neutrino search with interest in Δm² around 1.0 eV².

HFIR

- Operates at 85 MW
- Compact Core
- Located at ORNL
- Uses Highly Enriched Uranium (HEU) Fuel
 - The neutrino spectrum is almost entirely from Uranium-235.
- Typically 41% up-time
 - Allows in-depth background study.

PROSPECT Design

Current Prototype Status

Early Validation

- PSD Discrimination
- Li6 doping
- Double Ended readout
- Reactor On/Off comparisons

Early Validation

- PSD Discrimination
- Li6 doping
- Double Ended readout
- Reactor On/Off comparisons
- And many others ...

Early Validation

- PSD Discrimination
- Li6 doping
- Double Ended readout
- Reactor On/Off comparisons
- And many others ...

Absolute Spectrum

- HEU Fuel
- Energy Resolution 4-5%/√E
- Constraints on Nuclear Models
- Inputs for future reactor experiments.

Sterile Neutrino Search

- Relative measurement no absolute spectrum dependence
- Assumptions:
 - $4.5\%/\sqrt{E}$ energy resolution
 - 20cm position resolution
 - 1:1 signal to background

Closing Statements

- PROSPECT is being proposed to study the reactor antineutrino spectrum and to search for a 1 eV² scale sterile neutrino.
 - Using HEU fuel, we can greatly decrease the uncertainties on the Uranium 235 spectrum and aid to guide future reactor models.
 - Within 1 year of P2k, we will have 3σ coverage over the current global best fit sterile neutrino.
- Prototypes have been deployed and are aiding in the final detector configuration.
- The studies of \overline{v}_e disappearance provide complementary studies to current Fermilab SBL program (v_{μ} to v_e appearance and v_{μ} disappearance)

The PROSPECT Collaboration

10 Universities6 National LabsUpdated Whitepaper:

arXiv:1309.7647

Website: http://prospect.yale.edu/

Brookhaven National Laboratory Drexel University Idaho National Laboratory **Illinois Institute of Technology** Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory National Institute of Standards and Technology **Oak Ridge National Laboratory Temple University University of Tennessee** Virginia Tech University **University of Waterloo** University of Wisconsin **College of William and Mary** Yale University

5/5/15

BACKUPS

VILLINOIS INSTITUTE OF TECHNOLOGY Comparison to Other Experiments

	<u>Effort</u>	Dopant	Good X-Res	Good E-Res	L Range (meters)	Fuel	Exposure, MW*ton	Move- able?	Running at intended reactor?
US	PROSPECT	Li	Yes	Yes	6.5-20	HEU	185	Yes	Yes
	NuLat	Li/B	Yes	Yes	TBD	TBD	TBD	Yes	No
EU	Nucifer	Gd	No	Yes	7	HEU	56	No	Yes
	STEREO	Gd	Yes	Yes	9-11	HEU	100	No	Yes
	SoLid	Li	Yes	No	6-8	HEU	155	No	Yes
Russia	DANSS	Gd	Yes	No	9.7-12	LEU	2700	Yes	Yes
	Neutrino4	Gd	Yes	No	6-12	HEU	150	Yes	Yes
Asia	Hanaro	Li/Gd	No	Yes	20-ish	LEU	30	No	No

B. Littlejohn Fermilab Intesity Frontier Seminar 2015

Backgrounds at HFIR

