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Motivation 
 IceCube sensitive 

below several PeV 

Sensitivity Gap in 

PeV – EeV region 

Askaryan Radio 

detectors become 

sensitive close to 

the EeV region 
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New detection method 
 

M. Abou Bakr Othman et al,  

Proceedings 32nd ICRC, Beijing 2011  

If a RADAR signal can be bounced off of a neutrino 

induced cascade in ice, we have control over the signal 

strength! 

Infrastructure already 

available! 

 



RADAR scattering 
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• Under-dense 

scattering: 
• Over-dense 

scattering: 

Radar frequency < Plasma 

Frequency 

 

Reflection from the surface of the 

plasma tube 

Radar frequency > Plasma 

Frequency 

 

Scattering off of the individual 

charges in the plasma 



Over-dense scattering 
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RADAR return power 
estimation 
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Transmitted 

power: Pt 
Effective 

area of 

receiver: Aeff 

Plasma scattering 

surface: σeff 

Transmission over 

¼ of a sphere: 

1/(πR2) 

Re-scattering over 

a sphere: 1/(4πR2) 

Bi-static RADAR configuration 

Attenuation by the  

medium 



RADAR return power 
estimation (single antenna) 
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RADAR return power 
estimation (single antenna) 
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RADAR return power 
estimation (single antenna) 
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Open questions: The Plasma 
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- How large is the over-dense plasma? 

 

- What is the influence of skin-effects? 

 

- What is the lifetime of the plasma? 

 

- Is the plasma collision frequency low  

  enough? 

  

                      Experimental verification 

                      needed! 

 



Radar scattering experiment 
at TA-ELS 
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Many thanks to the Chiba group and 
the Telescope Array Collaboration ! 

 

Aya 

Matt 

Kael 



Experimental setup 
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Experimental setup 
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Signal chain 
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Radar scattering 
Beam characteristics 

13 

~109 (40 MeV) electrons 

~ 40 PeV 



Radar scattering 
What do we see? 
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Radar scattering 
What do we see? 
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Radar scattering 
What do we see? 
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V/Hz(1.55 GHz) 

Time (100 ns bins) 



Radar scattering 
Interference and instrumental 

effects 
 

- Accelerator noise interferes with our  

     transmit signal  

 

- Non-linear amplifier response 

 

- Signal can be mimicked by these effects!  

 

- What if we look at a different frequency than 

our transmit frequency? 
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Radar scattering 
Air 

No scaling 

observed 
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Accelerator 

background 



Radar scattering 
Ice 

Scaling with 

input power 
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Accelerator 

background 



Conclusions 

- Modeling the RADAR scattering of  

  high-energy neutrino induced cascades    

  gives an energy threshold of several PeV. 

 

- We performed a measurement to  

  determine the feasibility of this method. 

 

- Obtained data hints toward a scattered  

  signal, analysis is ongoing. 

 



Three different types of plasma 
are considered 
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Leftover electrons from ionization: 
Extension: O(30 cm) 
Lifetime: O(1-20 ns) 

I I 

I 

I I 

I 

I 

I 

e
- 

e
- 

e
- 

e
- 

e
- 

e
- 

e
- 

I I 

I 

I 

I 

I 

I I 

I 

I I 

I 

I 

I 

I I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Shower front electrons: 
Extension: RL = O(10 cm) 

Lifetime: O(100ns) 
Moving! 

Leftover protons from 
ionization: 

Wide extension: O(5m) 
Lifetime: O(10-1000 ns) Ionization numbers come 

from Physical Chemistry 

research! 

Figure from arXiv:1210.5140v2 



Skin Effects 
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Model: Consider over-dense cylinders of equal density 

Calculate skin depth  

for a collision less plasma: 

 

Within 1 skin depth the 

amount of power absorbed 

and re-scattered equals: 

  

p

c
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The over-dense radar cross-
section 
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This approach:  

1. Include skin-effects directly into the radar cross-section. 

2. Consider projected area and polarization angles for in/out-

going wave 
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The under-dense radar 
cross-section 
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The wave will scatter off of the individual 

electron given by the Thompson cross-section 

We have to take into account for the phase lag 

of the individual electrons w.r.t. each other: 


