Wave-Packet Treatment for Detection of Accelerator Neutrinos

Li, Cheng-Hsien \& Qian, Yong-Zhong
University of Minnesota, Twin Cities

IPA 2015, May 5th 2015

Introduction

- Quantum particles should be treated as Wave Packets (WPs).
- Finite size of the WP introduces intrinsic momentum uncertainty.
- Non-zero probability of detecting the neutrino off its classical path.
- $\Delta \theta \sim \Delta p_{\perp} / p_{0} \sim 1 / 2 E_{\nu} a_{t}$
- Current Monte Carlo simulations assume Point-like Particles (PPs)
- In particular, "classical" pion decay in lab frame is used:

$$
\frac{\mathrm{d} P}{\mathrm{~d} \Omega} \approx \frac{\gamma^{2}\left(1+\tan ^{2} \theta\right)^{\frac{3}{2}}}{\pi\left(1+\gamma^{2} \tan ^{2} \theta\right)^{2}} \& E_{\nu}(\theta) \approx \frac{\left(1-m_{\mu}^{2} / M_{\pi}^{2}\right) \gamma M_{\pi}}{1+\gamma^{2} \tan ^{2} \theta}
$$

- The above describe the MEAN PATH and energy of a neutrino WP.

Motivation \& Approach

Motivation:

- Focus v.s. Defocus of the neutrino beam. Does WP treatment change the prediction of experimental observables?
- Is it possible to determine the WP size from accelerator experiments?

Approach:

- We assume 3D and Massless Gaussian WP parameterized by a_{l} and a_{t}. Its momentum distribution is assumed to be sharp.
- We derive the probability $\Theta\left(\theta^{\prime}\right)$ of detecting the neutrino at an angle θ^{\prime} relative to its classical path. $\Theta\left(\theta^{\prime}\right) \sim \exp \left\{-\frac{\theta^{\prime 2}}{2 \cdot\left(2 E_{\nu} a_{t}\right)^{-2}}\right\}$.
- With $\Theta\left(\theta^{\prime}\right)$, we derive the probability distribution as a function of neutrino energy and observation angle relative to the pion's mean trajectory.
- The new distribution is applied to calculate experimental spectrum.

Modified Probability Distribution

- Due to WP spreading, the probability of detecting the neutrino within $\mathrm{d} \Omega_{0}$ is an incoherent sum over different emission directions.

$$
\frac{\mathrm{d} P}{\mathrm{~d} \Omega_{0} \mathrm{~d} E_{\nu}}=\int_{0}^{2 \pi} \mathrm{~d} \phi \frac{\mathrm{~d}(\cos \theta)}{\mathrm{d} E_{\nu}} \frac{\mathrm{d} P}{\mathrm{~d} \Omega} \Theta\left(\theta^{\prime}, E_{\nu}\right)
$$

- WP and PP treatments are equivalent if $\left(2 E_{\nu} a_{t}\right)^{-1} \ll \gamma^{-1}$.

Application to Accelerator Experiments

- For demonstration purpose, we consider secondary beam (π^{+}only) profiles and near detector geometries similar to the MINOS and $\mathrm{NO} \nu \mathrm{A}$ experiments.
- Geometric variables in the numerical calculation. The azimuthal angles are not displayed.

Application to Accelerator Experiments

- Predicted ν_{μ} charged current spectrum in the near detectors of (a) on-axis and (b) off-axis experiments.
- MC simulation with uncertainty from PRL 106, 181801 (2011) is included in (a) for comparison. Caution: no statistical interpretation is intended here!
- WP spreading shifts the spectrum toward low (high) energy in the on-axis (off-axis) experiment.

Application to Accelerator Experiments

- $N_{W P} / N_{P P}$ as a function of a_{t}.
- The number is counted regardless of neutrino energy.
- Assume no neutrino oscillations in the far detector calculation.
- Almost the same ratio in both near and far detectors.

Summary

- With a simple Gaussian neutrino WP emerging from pion decay in flight, we derive the modified probability distribution which can be easily included in Monte Carlo simulations.
- WP spreading shifts neutrino spectrum in the opposite directions for on/off-axis experiments.
- Null observation of the spectral shift in the near detector could place a lower bound on a_{t}.

Thank You!

Massless 3D Gaussian WP

- At $t=0$, the initial WP can be expressed as

$$
\Psi(\vec{r}, 0)=\frac{1}{(2 \pi)^{3 / 4} a_{t} a_{l}^{1 / 2}} \exp \left(-\frac{\rho^{2}}{4 a_{t}^{2}}-\frac{z^{2}}{4 a_{l}^{2}}+i p_{0} z\right)
$$

- The probability $\Theta\left(\theta^{\prime}\right)$ can be found by two equivalent methods:
(1) By solving the wave equation, $\Psi(\vec{r}, t>0)$ turns out to be a spherical wave front with constant radial width a_{l} and an asymptotically constant angular distribution. The wave front moves at the speed of light.
(2) Alternatively, one can analyze the momentum distribution $\tilde{\Psi}(\vec{p})$ of the initial WP. The normalization condition of $\tilde{\Psi}(\vec{p}), \Theta\left(\theta^{\prime}\right)$ suggests.

$$
\begin{equation*}
1=\int \frac{\mathrm{d}^{3} \vec{p}}{(2 \pi)^{3}}|\tilde{\Psi}(\vec{p})|^{2}=\int \mathrm{d} \Omega^{\prime} \underbrace{\int_{0}^{\infty} \frac{p^{2} \mathrm{~d} p}{(2 \pi)^{3}}|\tilde{\Psi}(\vec{p})|^{2}}_{\Theta\left(\theta^{\prime}\right)} \tag{1}
\end{equation*}
$$

Spectral Shift \& Adjusted Beam Normalization

- Define detector position according to the characteristic angle of pion decay.
- Assume collinear trajectories for all pions for simplicity.
- At inside (outside) position, the detector sees less (more) number of neutrinos. The measured neutrinos are less (more) energetic.
- An on-axis detector is always at the inside position.
- An off-axis detector can be either "inside" or "outside", depending on the pion energy.

