Neutrinos & gamma rays

Complementary views on the high-energy universe.

The multi-messenger approach.

> 3 messengers to study the non-thermal universe.

The multi-messenger approach.

> Gamma-ray and neutrino production in hadronuclear interactions.

Hadronuclear interactions.

- Interactions of high-energy nuclei with target gas.
- > ν / γ spectrum follows spectrum of nuclei.
- > Simple relative γ / ν yields.
- > Well-known example: GeV Galactic diffuse emission

GeV diffuse emission dominantly produced in hadronuclear interactions.

The multi-messenger approach.

> Photo-hadronic interactions in radiation field targets.

Photo-hadronic interactions.

- Dominated by resonances in the cross section.
- > ν and γ spectra **depend on target photon** fields.
- > High energy threshold for process: $E_p \gtrsim 7 \times 10^{16} \text{ eV}^2 / E_{\gamma}$
- > **Different yields** of ν and anti- ν .

The multi-messenger approach.

> Many processes without ν production.

> ν are a diagnostic for CR interaction processes.

Propagation of high-energy γ **-rays.**

Extragalactic background light (EBL)

Frequency v [GHz] 10° 105 104 10³ 10² 10¹ 106 CMB 10-7 star light dust $W m^{-2} sr^{-1}$ CMB 10-960 109 COB CIB 24 23 10-10 101 10° 10¹ 10² 10³ 104 105 Wavelength λ [µm] + radiation fields at source

Target medium р р p-p collisions $\pi^{+/-}$ π^0 Vμ Vμ e Ve

Cosmic rays

Neutrinos

Propagation of high-energy γ **-rays.**

Extragalactic background light (EBL)

Propagation of high-energy γ **-rays.**

Extragalactic background light (EBL)

Markus Ackermann | 04.05.2015 | Page 8

The gamma-ray and the neutrino domain.

The gamma-ray and the neutrino domain.

The GeV gamma-ray sky.

Fermi LAT, 4-year sky map, E > 1 GeV

- > More than **3000 sources**.
- Many Galactic and extragalactic source populations.
- > Galactic & extragalactic diffuse emission.

The neutrino sky.

Neutrinos and gamma rays from the Galaxy.

Is there a Galactic component in the astrophysical neutrino flux ?

Do we see the signs of Galactic cosmic-ray acceleration?

Galactic γ -ray and neutrino emission.

- Most Galactic sources are expected to be transparent to γ-rays.
- > Assuming all emission to be hadronuclear gives upper limit on the v - flux.
- v flux predictions from emission model based on broadband SED.

Neutrino flux upper limits from IceCube data.

 10^{2}

 10^{3}

energies for Galactic sources limit sensitivity.

 E_{ν} (GeV)

10⁴

 10^{5}

 10^{7}

 10^{6}

The origin of the astrophysical neutrino flux.

- > Search for possible counterparts in TeV gamma-ray source catalog.
- IceCube shower events have 10° – 15° angular resolution.
- > Compare power emitted in γ -rays to power in neutrinos.
- Several Blazars and Galactic sources found as potential TeV counterparts to neutrino sources.

Welcome to TeVCat!

Neutrinos from CR interactions in the Galaxy ?

The extragalactic gamma-ray and neutrino sky.

Fermi LAT, 4-year sky map, E > 1 GeV

The 3rd LAT catalog of Active Galactic Nuclei (AGN)

- > 1591 high-latitude LAT sources associated with **AGN**
 - 1559 associated with Blazars
 - 32 associated with misaligned radio Galaxies
- > Blazars are the dominant **extragalactic** γ -ray source population.
- > Large fraction of unidentified sources are likely Blazars.

AGN type	Entire 3LAC	3LAC Clean Sample ^a	Low-latitude sample
All	1591	1444 +64	% 182
FSRQ	467	(414)+34	% 24
LSP	412	366	16
ISP	47	42	3
HSP	3	2	4
no classification	5	4	1
BL Lac	632	604 +52% 30	
LSP	162	150	15
ISP	178	173	4
HSP	272	265	10
no classification	20	16	1
Blazar of Unknown type	460	⁴⁰² +164% ¹²⁵	
LSP	198	164	54
ISP	89	79	26
HSP	120	118	39
no classification	53	41	6
Other AGN	32	24	3

3LAC

Benoit Lott, 5th Fermi Symp., Nagoya, 2014 arXiv:1501.06054

Search for correlation of v to the sample of Fermi Blazars.

- Most of the γ-ray emission from Blazars is from the individually detected Fermi LAT sources.
- > Search for neutrino emission **spatially coincident with 2LAC Blazar** sample.

All blazars from 2-LAC – 862 objects

> 3 years of IceCube data used (2009-2012).

Limit on neutrino emission from Fermi Blazars.

Star-forming / starburst galaxies.

"normal" star-formation rate

Abdo et al., 2010

extreme star-formation rate "starburst"

Abdo et al., 2010

> 4 starburst galaxies detected with the LAT

- > 4 local "normal" galaxies detected.
 - Andromeda, LMC, SMC & Milky Way

> Weak gamma-ray sources, but very abundant in the universe.

-50

40

30

20

10

The isotropic diffuse gamma-ray background (IGRB).

- > Extragalactic sources too weak to be detected form an isotropic background.
- Emission from undetected sources can be many times stronger than from detected ones if:
 - Source density is high, but their luminosity low.
 - Instrument sensitivity is low.

The isotropic diffuse gamma-ray background (IGRB).

- > Extragalactic sources too weak to be detected form an isotropic background.
- Emission from undetected sources can be many times stronger than from detected ones if:
 - Source density is high, but their luminosity low.
 - Instrument sensitivity is low.

The isotropic diffuse gamma-ray background (IGRB).

- > Extragalactic sources too weak to be detected form an isotropic background.
- Emission from undetected sources can be many times stronger than from detected ones if:
 - Source density is high, but their luminosity low.
 - Instrument sensitivity is low.

ermine origin of the l

Undetected

Je.

 produced in galaxy cluster mergers

Dark matter annihilation

 Potential signal dependent on nature of DM.

 Strongly dependent on evolution of UHECR sources..

LAT IGRB and EGB measurements

- > Measured by Fermi LAT between 100 MeV and 820 GeV.
- > Large systematic uncertainties from foreground subtraction.
- Total extragalactic gamma-ray background (EGB) = IGRB + resolved sources.
- > EGB is **independent** of the sensitivity of the **instrument**.

Neutrinos and γ -rays from star-forming galaxies.

Neutrinos and γ -rays from star forming Galaxies.

If extragalactic p-p collisions produce the observed v:

→ hard v-spectrum
below 10 TeV needed.

 Difficult to explain spectra considerably harder than Γ~2 in p-p scenario.

First hint at p-γ interactions being the dominant neutrino production mechanism?

> Or maybe that part of the signal is Galactic ?

updated to new IGRB measurement (Ackermann et al. 2015)

Similar constraints would apply to ν emission from galaxy clusters

Neutrinos and γ -rays from star forming Galaxies.

If extragalactic p-p collisions produce the observed v:

→ hard v-spectrum
below 10 TeV needed.

 Difficult to explain spectra considerably harder than Γ~2 in p-p scenario.

First hint at p-γ interactions being the dominant neutrino production mechanism?

> Or maybe that part of the signal is Galactic ?

updated to new IGRB measurement (Ackermann et al. 2015)

Similar constraints would apply to ν emission from galaxy clusters

Source population contributions to the EGB.

- > Observed extragalactic LAT source populations can account for the EGB intensity.
- > Blazars dominate the EGB, but significant uncertainties in modeling contributions.

Blazars revisited...

Gamma-ray bursts.

- > GRBs have been prime candidates for ultra-highenergy CR production.
- > Search for coincidence between GRB and neutrino emission.
- > So far no coincidence detected.
- Sophisticated modeling attempts to predict the connection between neutrino and gamma-ray emission.

watch the talk by W. Winter!

Summary

> Neutrinos and gamma rays are indeed complementary messengers. They probe

- different high-energy interactions.
- different energy regimes.
- different distance regimes.
- The correlations between the two messengers can be used to understand the highenergy emission of various source populations better.
 - Galactic high-energy ν sources compatible with γ -ray data, but no identification yet.
 - LAT Blazars contribute less than 20% to the diffuse ν -flux.
 - Extragalactic p-p scenarios (like star-forming galaxies) problematic.
 - No coincidence with GRBs detected yet.

lceCube-Gen2

New instruments proposed promise a bright future.
 ASTROGAM

Backup

Cosmogenic neutrinos

- > Ultra-high-energy cosmic rays interact with the EBL during propagation.
- Neutrino/Gamma production via pγinteractions
- > Reprocessing of gamma rays to GeV energies

PeV-EeV Neutrinos

EBL=extragalactic background light

Markus Ackermann | 04.05.2015 | Page 33

Cosmogenic neutrinos

- > Ultra-high-energy cosmic rays interact with the EBL during propagation.
- Neutrino/Gamma production via pγinteractions
- > Reprocessing of gamma rays to GeV energies

EBL=extragalactic background light

Multi-messenger constraints on UHECR properties.

- > CR, neutrino and gamma-ray spectrum from propagation code.
- > Cosmological evolution of sources corresponds to **GRB evolution**.

> Proton sources.

Multi-messenger constraints on UHECR properties.

- > CR, neutrino and gamma-ray spectrum from propagation code.
- > Cosmological evolution of sources corresponds to **FR-II galaxy evolution**.

> Proton sources.

