SIBYLL 2.3 and MCEq, a versatile numerical solver for atmospheric lepton fluxes

Anatoli Fedynitch ${ }^{1,2}$,Ralph Engel ${ }^{1}$,Thomas K. Gaisser ${ }^{3}$, Felix Riehn ${ }^{1}$ and Todor Stanev ${ }^{3}$
(1) KIT (IKP)
(2) CERN
(3) Bartol Research Institute, University of Delaware, Newark, USA

What's new in SIBYLL 2.3?

- development by Felix Riehn and Ralph Engel (KIT)
- baryon fragmentation
- generation of charmed hadrons
- improved vector meson production
- careful tuning to fixed-target and collider data
- at the same time verification using atmospheric muon data with MCEq
- many bugs fixed
- publicly available this summer

Pions and Kaons

Vector mesons

Charm production mechanisms

Contribution from hard scattering

- Largest contribution at high energies
- many NLO calculations available

Non-perturbative component

- di-quark fragments together with charm quark in valence scattering
- leading particle effect (SELEX)
- relevant contribution for inclusive fluxes of muons and neutrinos

Charm in fragmenation

- usually strongly suppressed u:d:s:c = 1:1:0.3:10-11
- in DPMJET-II. 55 enhanced by adding higher probability raising charm from the sea close to string ends

Charm production mechanisms

With remnant

No remnant

Figures: F. Riehn (PhD thesis)

LHCb phase-space, how limiting is limited?

- 7 TeV c.m energy well beyond the knee

$$
\begin{gathered}
\sqrt{s}=7 \mathrm{TeV} \rightarrow E_{l a b}=26 \mathrm{PeV} \\
\gamma_{C R} \approx 3
\end{gathered}
$$

- How much does LHCb phasespace contribute to integrated spectrum?

	\%
LHCb	7
perturbative	37
Non-perturbative	59

\rightarrow LHC data not restrictive

- Sibyll 2.3rc1

LHCb D00-mesons and Lambda-c

X_{F} distributions at fixed target experiments

$$
\sqrt{s}=27 / 39 \mathrm{GeV}
$$

Energy low but full phasespace coverage possible!

$$
y_{\max }^{39 G e V}=3.7
$$

F. Riehn, R. Engel, AF, T. Gaisser, T. Stanev, ISVHECRI 2014

Inclusive charm production

F. Riehn, R. Engel, AF, T. Gaisser, T. Stanev, ISVHECRI 2014

Matrix Cascade Equation - MCEq

- numerical solver for full system of coupled hadronic cascade equations
- very high execution speed due to sparse linear algebra
- sophisticated treatment of short-lived particles (prompt component)
- all physics parameters and inputs for flux calculations are transparent to users
- public open-source code

Ideal tool for background and systematics calculations of atmospheric lepton fluxes

Particles in SIBYLL

Leptons

$$
\mu^{+}, \mu^{-}, \tau^{+}, \tau^{-}, \nu_{e}, \nu_{\mu}, \nu_{\tau}, \bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{\nu}_{\tau}
$$

Mesons

$$
\begin{gathered}
K^{+}, K^{-}, K_{L}^{0}, K_{S}^{0}, \pi^{+}, \pi^{-}, D^{+}, D^{-}, D^{0}, \bar{D}^{0}, D_{s}^{+}, D_{s}^{-}, K^{*+}, K^{*-} \\
K^{* 0}, \bar{K}^{* 0}, D^{*+}, D^{*-}, D^{* 0}, \bar{D}^{* 0}, \eta, \eta^{*}, \eta_{C}, J / \Psi, \omega, \phi, \pi^{0}, \rho^{+}, \rho^{-}, \rho^{0}
\end{gathered}
$$

Baryons

$$
\begin{array}{r}
p, \bar{p}, n, \bar{n}, \Delta^{+}, \Delta^{++}, \bar{\Delta}^{++}, \bar{\Delta}^{+}, \Delta-, \bar{\Delta}^{+}, \Delta^{0}, \bar{\Delta}^{0}, \Lambda^{0}, \bar{\Lambda}^{0}, \Omega^{-}, \bar{\Omega}^{+}, \\
\Sigma^{*+}, \bar{\Sigma}^{*-}, \Sigma^{*-}, \bar{\Sigma}^{*+}, \Sigma^{* 0}, \bar{\Sigma}^{* 0}, \Sigma^{+}, \bar{\Sigma}^{-}, \Sigma^{0}, \bar{\Sigma}^{0}, \Lambda_{C}^{+}, \bar{\Lambda}_{C}^{-}, \Omega_{C}^{0}, \bar{\Omega}_{C}^{0}, \Sigma^{-} \\
\bar{\Sigma}^{+}, \\
\Xi^{-}, \bar{\Xi}^{+}, \Xi^{0}, \bar{\Xi}^{0}, \Xi_{C}^{+}, \bar{\Xi}_{C}^{+}, \Xi_{C}^{0}, \bar{\Xi}_{C}^{0}, \Sigma_{C}^{*+}, \Sigma_{C}^{*++}, \bar{\Sigma}_{C}^{*--}, \bar{\Sigma}_{C}^{*-}, \Sigma_{C}^{* 0} \\
\bar{\Sigma}_{C}^{* 0}, \Sigma_{C}^{+}, \Sigma_{C}^{++}, \bar{\Sigma}_{C}^{--}, \bar{\Sigma}_{C}^{-}, \Sigma_{C}^{0}, \bar{\Sigma}_{C}^{0}, \Xi^{*-}, \bar{\Xi}^{*+}, \Xi^{* 0}, \bar{\Xi}^{* 0}
\end{array}
$$

Very different particles can contribute and become important at high energies

Matrix form I

(discretized) coupled cascade equation for hadron of type h at (grid-) energy Ei:

$$
\frac{\mathrm{d} \phi_{h}\left(E_{i}\right)}{\mathrm{d} X}=\begin{array}{|c}
- \\
-\quad \frac{\phi_{h}\left(E_{i}\right)}{\lambda_{\text {int }}^{(h)}\left(E_{i}\right)} \\
-\sum_{E_{k} \geq E_{i}} \sum_{k} \frac{\phi_{h}\left(E_{i}\right)}{\lambda_{d e c}^{(h)}\left(E_{i}, X\right)} \\
\sum_{E_{k} \geq E_{i}} \sum_{k} \frac{c_{k}\left(E_{i}, E_{k}\right)}{\lambda_{i n t}^{(k)}\left(E_{k}\right)} \phi_{k}\left(E_{k}\right) \\
d_{\text {dec }}^{(k)}\left(E_{i}, E_{k}\right) \\
\sum_{k}\left(E_{k}\right)
\end{array}
$$

flux state vector
$E_{0} \ldots E_{N} \quad$ energy grid, typical 7-8 bins/decade
$c_{k \rightarrow h}\left(E_{i}, E_{k}\right) \quad$ inclusive hadron production cross-section from hadronic interaction models
$d_{k \rightarrow h}\left(E_{i}, E_{k}\right)$
inclusive decay cross-section
from PYTHIA 8 Monte Carlo

$$
\vec{\phi}=\left(\begin{array}{c}
\phi_{p}\left(E_{0}\right) \\
\phi_{p}\left(E_{1}\right) \\
\cdots \\
\phi_{p}\left(E_{N}\right) \\
\phi_{n}\left(E_{0}\right) \\
\cdots \\
\phi_{n}\left(E_{N}\right) \\
\phi_{\pi}^{+}\left(E_{0}\right) \\
\cdots \\
\phi_{\bar{\nu}_{e}}\left(E_{N}\right)
\end{array}\right)
$$

Matrix form II

2 dimensional representation of coupled CE

$$
(\text { hadrons } \times \mathrm{E}-\text { grid }) \times(\text { hadrons } \times \mathrm{E}-\text { grid })
$$

inclusive production cross-sections of h in interactions of I (sampling of interaction models)

$$
\boldsymbol{C}_{l \rightarrow h}=\left(\begin{array}{ccc}
c_{l\left(E_{0}\right) \rightarrow h\left(E_{0}\right)} & \cdots & c_{l\left(E_{0}\right) \rightarrow h\left(E_{N}\right)} \\
& & c_{l\left(E_{1}\right) \rightarrow h\left(E_{N}\right)} \\
& \ddots & \vdots \\
0 & & c_{l\left(E_{N}\right) \rightarrow h\left(E_{N}\right)}
\end{array}\right)
$$

interaction rates

$$
\begin{gathered}
\boldsymbol{\Lambda}_{i n t}=\operatorname{diag}\left(\frac{1}{\lambda_{i n t, E_{0}}^{p}} \cdots \frac{1}{\lambda_{i n t, E_{N}}^{p}},\right. \\
\frac{1}{\lambda_{i n t, E_{0}}^{n}}, \cdots, \frac{1}{\lambda_{i n t, E_{N}}^{n}}, \\
\left.\frac{1}{\lambda_{i n t, E_{0}}^{\pi_{0}^{+}}}, \cdots\right)
\end{gathered}
$$

Same approach for decays

interaction matrix

$$
C=\left(\begin{array}{cccc}
C_{p \rightarrow p} & C_{n \rightarrow p} & C_{\pi^{+} \rightarrow p} & \cdots \\
C_{p \rightarrow n} & C_{n \rightarrow n} & C_{\pi^{+} \rightarrow n} & \cdots \\
C_{p \rightarrow \pi^{+}} & C_{n \rightarrow \pi^{+}} & C_{\pi^{+} \rightarrow \pi^{+}} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Matrix-form } \\
& \frac{\mathrm{d}}{\mathrm{~d} X} \boldsymbol{\phi}=\left[(-\mathbf{1}+\boldsymbol{C}) \boldsymbol{\Lambda}_{i n t}+\frac{1}{\rho(X)}(-\mathbf{1}+\boldsymbol{D}) \boldsymbol{\Lambda}_{d e c}\right] \boldsymbol{\phi} .
\end{aligned}
$$

typical size

$$
6000 \times 6000
$$

few non-zero elements
sparse matrix

Comparison with CORSIKA calculation

Comparison for QGSJET-II-03 + H3a. Offset of 10 between lines.

Flux break-down

SIBYLL2.3_rc1 atmospheric lepton fluxes, TIG primary flux model.

Variation of primary CR flux or atmosphere

solid=vertical, dashed=horizontal

- arbitrary all-nucleon flux parameterizations (superposition)
- arbitrary atmospheric/density profiles

Muon charge ratio

Caution: ambiguity between primary and interaction model!

L3 Collaboration, Physics Letters B 598, 15 (2004)
MINOS Collaboration, Phys. Rev. D 76, 52003 (2007)

For model references see: $\underline{\text { https://github.com/afedynitch/CRFluxModels }}$

Prompt flux

BERSS: A. Bhattacharya, R. Enberg, M.H. Reno, I. Sarcevic and A. Stasto, arXiv:1502.01076 ERS: R. Enberg, M. H. Reno, and I. Sarcevic, Phys. Rev. D 78, 43005 (2008).
MRS: A. D. Martin, M. G. Ryskin, and A. M. Stasto, Acta Physica Polonica B 34, 3273 (2003). SIBYLL: arXiv:1503.00544 and arXiv:1502.06353
TIG: M. Thunman, G. Ingelman, and P. Gondolo, Astroparticle Physics 5, 309 (1996).

Primary cosmic ray energy (muons)

LHC R1

Primary cosmic ray energy (muon neutrinos)

LHC R1

Production height

Muons

Muon neutrinos

Summary/Outlook

SIBYLL 2.3

- Experiments with internal physical models are still ongoing
- final tuning can only be done after the physics contents are fixed
- a(n intermediate) version is expected this summer
- majority of distributions are better than in SIBYLL 2.1

MCEq

- code near final and available on github: https:///github.com/afedynitch/MCEq
- some analysis in IceCube have already experience with using it (Gabriel Collin)
- the precision is limited by the physical inputs: primary flux, hadronic interactions
- approximations in the cascade solution or due to numerics are negligible
- we are working on a full publication

Backup

Leading/non-perturbative charm

Asymmetry

$$
A \equiv \frac{\Lambda_{C}-\bar{\Lambda}_{c}}{\Lambda_{C}+\bar{\Lambda}_{c}}
$$

SELEX Collaboration, F. G. Garcia et al.,
Physics Letters B 528, 49 (2002).

Sketch of remnant model

incoming nucleon
nucleus

valence quarks + sea

excited state (similar to delta resonance)

remaining projectile hadrons

Comparison with atmospheric muons

Comparison to L3+C atmospheric muon measurement. SIBYLL2. 3 beta

Proton cascade

$$
\frac{\mathrm{d} \Phi_{p}(E, X)}{\mathrm{d} X}=-\frac{\Phi_{p}(E, X)}{\lambda_{i n t, p}(E)}+\int_{E}^{\infty} \frac{\Phi_{p}\left(E^{\prime}, X\right)}{\lambda_{i n t, p}\left(E^{\prime}\right)} \frac{\mathrm{d} N_{p \rightarrow p}\left(E^{\prime}\right)}{d E^{\prime}} \mathrm{d} E^{\prime}
$$

Factorization ansatz

Solution

$$
\Phi_{p}(E, X)=A(X) E^{-\gamma}
$$

$\Phi_{p}(E, X)=A(0) e^{-X / \Lambda} E^{-\gamma}$

$$
\begin{aligned}
\frac{\mathrm{d} A(X)}{\mathrm{d} X} & =-\frac{A(X)}{\lambda_{\text {int }, p}}\left[1-\int_{0}^{1} x^{\gamma-1} \frac{\mathrm{~d} N_{p \rightarrow p}}{\mathrm{~d} x}\right] \\
& =-\frac{A(X)}{\lambda_{\text {int }, p}}\left[1-Z_{p p}\right]=-\frac{A(X)}{\Lambda}
\end{aligned}
$$

Problems

- proton production properties $\left(Z_{p p}\right)$ independent of energy (scaling)
- interaction cross-sections independent of energy
- valid only for power-law primary spectra

Couplings in a (p,n,pion) system

Coupled cascade equation for pions

$$
\frac{\mathrm{d} \Phi_{\pi}}{\mathrm{d} X}=-\frac{\Phi_{\pi}}{\lambda_{\text {int }, p}}-\frac{\Phi_{\pi}}{\lambda_{\text {dec }, p}}+Z_{\pi \pi} \frac{\Phi_{\pi}}{\lambda_{\text {int }, \pi}}+Z_{\overline{2 \pi} \frac{\Phi_{p}}{\lambda_{\text {int }, p}}+Z_{n \pi} \frac{\Phi_{n}}{\lambda_{\text {int }, n}}}^{\text {coupling }} \text { + decays into }
$$

coupled cascade equation for muons

$$
\frac{\mathrm{d} \Phi_{\mu}}{\mathrm{d} X}=-\frac{\Phi_{\mu}}{\lambda_{\text {dec }, \mu}}+S(\pi \rightarrow \mu)=-\frac{\Phi_{\mu}}{\lambda_{\text {dec }, \mu}}+Z_{\pi \rightarrow \mu}^{D} \frac{\Phi_{\pi}}{\lambda_{\text {dec }, \pi}}
$$

and muon neutrinos

$$
\frac{\mathrm{d} \Phi_{\nu}}{\mathrm{d} X}=S(\pi \rightarrow \nu)
$$

Becomes complicated if more channels/particles are included

Important lepton production channels

conventional

$p, A+\operatorname{air} \rightarrow \pi^{ \pm}, \pi^{0}, \mathrm{~K}^{ \pm}, \mathrm{K}_{\mathrm{S}, \mathrm{L}}^{0}$
muons and muon neutrinos

$$
\pi^{ \pm}, K^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}\left(\bar{\nu}_{\mu}\right)
$$

electron neutrinos

$$
K^{ \pm}, K_{L}^{0} \rightarrow\left[\pi^{ \pm}, \pi^{0}\right] e^{ \pm} \nu_{e}\left(\bar{\nu}_{e}\right)
$$

prompt
$p, A+\operatorname{air} \rightarrow \mathrm{D}, \Lambda_{\mathrm{C}} \rightarrow \nu_{\mu}, \nu_{\mathrm{e}}, \mu$

Subset of dominant decay channels decay channel branching ratio (BR)

$\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$	100%
$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$	99.9877%
$K_{e 3}^{0}: K_{L}^{0} \rightarrow \pi^{ \pm} e^{\mp} \nu_{e}$	40.55%
$K_{\mu 3}^{0}: K_{L}^{0} \rightarrow \pi^{ \pm} \mu^{\mp} \nu_{\mu}$	27.04%
$K^{+} \rightarrow \mu^{+} \nu_{\mu}$	63.55%
$K_{e 3}^{+}: K^{+} \rightarrow \pi^{0} e^{+} \nu_{e}$	5.07%
$K_{\mu 3}^{+}: K^{+} \rightarrow \pi^{0} \mu^{+} \nu_{\mu}$	3.353%
$D^{+} \rightarrow \bar{K}^{0} \mu^{+} \nu_{\mu}$	9.2%
$D^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$	3.3%
+ charge conjugates	http://lpdg.lll.gov

Energy distribution in decays

Numerical challenges

For pion and kaon decay is a slow process

For short-lived particles

$$
\lambda_{d e c}^{D} \ll \lambda_{i n t} \quad \longrightarrow \Delta X \propto \lambda_{d e c}^{D}
$$

Interaction length

$$
\lambda_{i n t, h}(E)=\frac{m_{\text {Air }}}{\sigma_{h-A i r}^{\text {inel }}(E)}
$$

Independent of X or height weak dependence on energy

Decay length

$$
\begin{aligned}
\lambda_{d e c, h}(E, X) & =\frac{c \tau_{h} E \rho_{\text {Air }}(X)}{m_{h} c^{2}} \\
& =\frac{E X \cos \theta}{E_{c r i t, h}}
\end{aligned}
$$

proportional to energy (boost)

Relative difference between models - muons

total

μ, primary model: H3a, conentional + prompt

conventional
μ, primary model: H3a, conventional

Flux for a each interaction model, divided by flux calculated with current dev. version SIBYLL 2.3

Feynman x range - SIBYLL 2.3 RC1

Feynman x range - SIBYLL 2.1

Feynman x range - QGSJET-II-04

