#### The Cosmic-Ray Air Shower Signal in Askaryan Radio detectors

Krijn de Vries, Stijn Buitink, Nick van Eijndhoven, Thomas Meures, Aongus O'Murchadha, Olaf Scholten IIHE VUB, ULB, KVI Vrije Universiteit Brussel

### Radio Emission Mechanisms: Charge excess: Geomagnetic:



#### CX-MC-GEO+MCFIT: The particle distributions in the shower front



K. Werner, et. al. Astropart. Phys. 37 (2012) 5-16; arXiv:1201.4471

### Emission Mechanisms From Currents to radiation.

$$A^{\mu}(\vec{x},t) = \frac{J^{\mu}(t')}{|D(\vec{x},t)|}$$
$$D = R(1 - n\beta \cos(\theta))$$
$$= R\frac{dt}{dt'}$$

$$\vec{E}(\vec{x},t) = -\frac{d}{dt}\vec{A}(\vec{x},t) - \frac{d}{d\vec{x}}A^{0}(\vec{x},t)$$

$$\vec{E}(\vec{x},t) \propto \frac{1}{D^2}$$

#### D can vanish for realistic cases, $n = n(z) \neq 1 \rightarrow Cherenkov !$ <u>ArXiv: 1503.02808</u>

### Recent work: Coherent Transition Radiation





5

Effective parameterization of the air shower front.



Lateral dimension folded onto longitudinal dimension. Full 3D description is under development.

## The air shower signal vs the neutrino induced cascade



7

#### What can we learn from the Cosmic-Ray air shower signal?

- The in-ice emission is due to the same mechanism (Askaryan emission) as for a neutrino induced cascade. The expected signal is similar for CR and neutrino induced cascades.

 In combination with surface detector the detected signal might provide an excellent (cross-) calibration.

- The in-ice Askaryan radio detector can be used as a cosmic-ray air shower detector.





#### **Conclusions and Outlook**

- The cosmic-ray air shower signal in Askaryan radio detectors has been modeled giving:
  1) The in-air emission solving for refraction.
  2) The transition radiation at the air-ice surface.
  3) The in-ice emission.
- The signal is comparable to that of a neutrino induced cascade and should thus be measurable. Possible applications are:
  - (Cross-) calibration in combination with a surface detector.
     Air shower physics
     On-site feasibility of the detection technique.
- A more detailed modeling of the shower front is under development.

Recent work: Coherent Transition Radiation

$$\vec{E}(\vec{x},t) = \frac{ex^{i}}{4\pi\varepsilon_{0}c} \lim_{\varepsilon \to 0} \left(\frac{1}{D^{2}_{z_{B}+\varepsilon}} - \frac{1}{D^{2}_{z_{B}-\varepsilon}}\right) \delta(z-z_{B})$$

The delta-function can be resolved by considering coherent emission over a macroscopic particle distribution!!!

$$\vec{E}(\vec{x},t) = \frac{eN_e(t_r)f(h)x^i}{4\pi\varepsilon_0 c} \left(\frac{1}{D^2_{z_B+\varepsilon}} - \frac{1}{D^2_{z_B-\varepsilon}}\right)_{h=ct_r-z_B}$$

ArXiv: 1503.02808