Waxman and Bahcall meet Auger @ a single energy bin

Luis A. Anchordoqui (for the Pierre Auger Collaboration)

Department of Physics and Astronomy Lehman College, City University of New York

IceCube Particle Astrophysics May 4, 2015

arXiv:1504.0539

L. A. Anchordoqui (CUNY)

WB meet Auger @ a single energy bin

Table of Contents

- OHEν identification @ Auger
- Searching for UHEν @ Auger

Conclusions

Cosmic ray \rightleftharpoons neutrino connection

- UHEν's are expected to be produced through decay of π[±]'s which originate in CR interactions with matter and or radiation
- CRs could scatter off ambient gas and thermal photons while undergoing acceleration at sources or *en route* to Earth
- Observation of UHE v's can provide clues on:
 - Dominant mechanism for CR production
 - Cosmological evolution of CR sources
 - CR nuclear composition (constraint on proton fraction)

(Ahlers-LAA-Sarkar, 2009)

- PeV neutrino detection @ IceCube reading major breakthough in field (IceCube Collaboration, 2013-2014)
- SeV v's have so far escaped detection by existing experiments
- Waxman-Bahcall energetics sets upper bound on these ν 's

(Waxman-Bahcall, 1999)

Pierre Auger Observatory

1,600 water-Cherenkov stations overlooked by 4 fluorescence detectors

L. A. Anchordoqui (CUNY)

WB meet Auger @ a single energy bin

IPA 2015 4 / 16

Baryonic background

- Quasi-horizontal showers traverse several vertical atmospheres
- Beyond two vertical atm most EM component is extinguished
- Hadron shower front is relatively flat only very high µ's survive

AoP

- Auger is not directly sensitive to µ and EM components separately nor to depth at which shower is initiated
- Signals produced by passage of shower particles are digitized by flash analog to digital converters (FADC) with 25 ns resolution
- FADC traces allow discrimination of narrow signals in time from broad signals expected in showers initiated close to ground
- Area-over-Peak ratio of integral of FADC trace to its peak value normalized to average signal produced by single muon
- AoP provides estimate of spread time of traces
 observable to discriminate broad from narrow shower fronts
- Optimization of signal-to-noise separation via Fisher discriminant: projection of the distributions of discriminating variables onto a line

Distributions of $\langle AoP \rangle$ and Fisher variable

• $90^{\circ} < \theta < 95^{\circ} \implies \langle AoP \rangle$ over all triggered stations

- $75^{\circ} < \theta < 90^{\circ}$ is linear combination of:
 - AoP and $(AoP)^2$ of four stations that trigger first in each event
 - 2 product of four AoP
 - global parameter measuring asymmetry between average AoP of early stations and those triggered last on event

• $60^{\circ} < \theta < 75^{\circ}$ is individual AoP of four or five stations closest to core

(01/01/04 - 06/20/13) data unblinding III no events survive selection criteria

90% CL upper limit on *v*-flux normalization for Fermi engines

- Assume differential ν flux $\bowtie \frac{dN}{dE_{\nu}} = N_0 E^{-2}$
- Assume flavor ratio $\nu_e : \nu_\mu : \nu_\tau = 1 : 1 : 1$
- Assume zero background events is $N_0 = \frac{1}{\int_F}$

$$\frac{2.4}{E_{\nu,min}^{2}E_{\nu}^{-2}\mathcal{E}_{tot}(E_{\nu})\,dE_{\nu}}$$

Systematic uncertainties

Source of systematic	Combined uncertainty band
Simulations	\sim +4%, -3%
u cross section & $ au$ E-loss	\sim +34%, -28%
Topography	\sim +15%, 0%
Total	\sim +37%, -28%

90% CL upper limit on N_0

90% CL upper limit on N_0

90% CL upper limit on N_0

Model-independent 90%CL upper limit on ν flux

- If number of events integrated over energy is bounded by 2.4 it is also certainly true bin by bin in energy
- At 90% CL for some interval $\Delta \bowtie \int_{\Delta} dE_{\nu} \frac{dN}{dE_{\nu}} \mathcal{E}_{\text{tot}}(E_{\nu}) < 2.4$
- In logarithmic interval Δ is take $\frac{dN}{dE_{\nu}} \mathcal{E}_{tot}(E_{\nu}) \sim E_{\nu}^{\alpha}$ to obtain

$$\int_{\langle E_{\nu}\rangle e^{-\Delta/2}}^{\langle E_{\nu}\rangle e^{\Delta/2}} \frac{dE_{\nu}}{E_{\nu}} E_{\nu} \frac{dN}{dE_{\nu}} \mathcal{E}_{\text{tot}}(E_{\nu}) = \langle \mathcal{E}_{\text{tot}}(E_{\nu}) E_{\nu} \frac{dN}{dE_{\nu}} \frac{\sin h \,\delta}{\delta} \Delta$$

with
$$\delta = (\alpha + 1)\Delta/2$$

Since $\sinh \delta/\delta > 1 \Im \langle \mathcal{E}_{tot}(E_{\nu}) \rangle \langle E_{\nu} dN/dE_{\nu} \rangle < 2.4/\Delta$

(LAA-Feng-Goldberg-Shapere, 2002)

Hereafter is $\Delta = 0.5$ in $\log_{10} E_{\nu}$

90% CL upper limit on ν flux

90% CL upper limit on ν flux

Take home message

- **1** No ν candidates were found
- Plux upper limit challenges predictions near WB bound
- Maximum sensitivity of Auger is achieved in EeV bins
- Energy weighted cosmogenic v-flux also peaks around EeV
- Extrapolation of IceCube flux

$$\frac{dN}{dE_{\nu}} = 2.06 \times 10^{-18} \left(\frac{E_{\nu}}{10^5 \text{GeV}}\right)^{2.46} (\text{GeV}\,\text{cm}^2\,\text{s}\,\text{sr})^{-1}$$

up to 10^{11} GeV rightarrow would produce ~ 0.1 events @ Auger