Coherent Elastic Neutrino-Nucleus Scattering (CEvNS):

(Pronounced seh-vens)

Robert Cooper

http://neutrino.indiana.edu/rlcooper

Outline

- Physics Motivation for CE_VNS
- How do we measure CE_VNS ?
 - i.) Neutrino production
 - ii.) Detection
 - iii.) Background suppression
- Prominent accelerator efforts
 i.) CENNS at FNAL BNB
 ii.) COHERENT at ORNL SNS

"Wait a minute! Isn't anyone here a real sheep?"

Describing the CEvNS Signal

• To probe a "large" nucleus (few × 10⁻¹⁵ m)

$$E_{\nu} \lesssim \frac{hc}{R_N} \cong 50 \text{ MeV}$$

- Detector signature is the recoiling nucleus
- Recoil energy that is deposited $E_r^{\rm max} \simeq \frac{2E_\nu^2}{M} \simeq 50~{\rm keV}$

• This is quite small for particle & nuclear physics \rightarrow Dark Matter

Structure of the CEvNS Signal

• Predicted scattering rate

¹Image from K. Scholberg

Structure of the CEvNS Signal

¹J.I. Collar et al., Nucl. Instrum. Meth. **A773** (2014) 56. arXiv:/1407.7524 [physics.in-det]

WIPAC 2015 -- R.L. Cooper

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background
- Low-mass dark matter searches (related)
- Neutrino-induced neutron production (related)

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background
- Low-mass dark matter searches (related)
- Neutrino-induced neutron production (related)

4th vs 2nd Form Factor Moments

$$F(Q^2) = \frac{1}{Q_W} \left[F_n(Q^2) - (1 - 4\sin^2\theta_W)F_p(Q^2) \right]$$

$$F_n(Q^2) \approx \int \rho_n(r) \left(1 - \frac{Q^2}{3!}r^2 + \frac{Q^4}{5!}r^4 - \frac{Q^6}{7!}r^6 + \cdots \right) r^2 dr$$

¹K. Patton et al., Phys. Rev. **C86** (2012) 024612. arXiv:/1207.0693 [nucl-th]

WIPAC 2015 -- R.L. Cooper

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background
- Low-mass dark matter searches (related)
- Neutrino-induced neutron production (related)

¹E.g., Horowitz et al., Phys. Rev. **D68** (2003) 023005. arXiv:astro-ph/0302071 [astro-ph]

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background
- Low-mass dark matter searches (related)
- Neutrino-induced neutron production (related)

¹L. Baudis, Phys. Dark Univ. **4** (2014) 50-59. arXiv:/1408.4371 [astro-ph]

- Never been observed!
- Oscillations (spatially)
- Form factors
- Supernova physics
- Non-standard interactions
- Irreducible dark matter background
- Low-mass dark matter searches (related)
- Neutrino-induced neutron production (related)

¹A.R. Samana & C.A. Bertulani, Phys.Rev. **C78** (2008) 024312. arXiv:/0802.1553 [nucl-th]

U INDIANA UNIVERSITY

COHERENT at the Spallation Neutron Source

J. Adam,¹ P.S. Barbeau,^{1,2} P. Barton,³ A. Bolozdvnva,⁴ B. Cabrera-Palmer,⁵ J.I. Collar,⁶ R. Cooper,³ R. Cooper,⁷ D. Dean,⁸ Y. Efremenko,^{4,9} S. Elliott,¹⁰ N. Fields,¹¹ M. Foxe,¹² A. Galindo-Uribarri,^{8,9} M. Gerling,⁵ M. Green,⁸ G. Greene,^{8,9} D. Hornback,⁸ T. Hossbach,¹² E.B. Iverson,⁸ S. Klein,³ A. Khromov,⁴ A. Kumpan,⁴ W. Lu,⁸ D. Markoff,^{13,2} P. Mueller,⁸ M. McIntyre,¹⁴ J. Newby,⁸ J. Orrell,¹² S. Penttila,⁸ G. Perumpilly,⁶ D. Radford,⁸ H. Ray,¹⁴ J. Raybern,^{1,8} D. Reyna,⁵ G. Rich,² D. Rimal,¹⁴ K. Scholberg^{*},^{1,†} B. Scholz,⁶ S. Suchyta,¹⁵ R. Tayloe,⁷ K. Vetter,^{15,3} and C.H. Yu⁸ ¹Department of Physics, Duke University, Durham, NC 27708, USA ² Triangle Universities Nuclear Laboratory, Durham, North Carolina, 27708, USA ³Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ⁴National Research Nuclear University MEPhI, Moscow, 115409, Russia ⁵Sandia National Laboratories, Livermore, CA 94550, USA ⁶Enrico Fermi Institute, Kavli Institute for Cosmological Physics and Department of Physics, University of Chicago, Chicago, IL 60637 ⁷Department of Physics, Indiana University, Bloomington, IN, 47405, USA ⁸Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ⁹Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA ¹⁰Los Alamos National Laboratory, Los Alamos, NM, USA, 87545, USA ¹¹Enrico Fermi Institute, Kavli Institute for Cosmological Physics and Department of Physics, University of Chicago, Chicago, IL 60637, USA ¹²Pacific Northwest Laboratory, Richland, WA 99352, USA ¹³Physics Department, North Carolina Central University, Durham, North Carolina 27707, USA ¹⁴Department of Physics, University of Florida, Gainesville, FL 32611, USA ¹⁵Department of Nuclear Engineering, University of California, Berkeley, CA, USA

¹https://fsnutown.phy.ornl.gov/fsnufiles/positionpapers/Coherent_PositionPaper.pdf

SNS Neutron / Neutrino Source

• Few GeV protons on target produces **stopped** π^+

 $\begin{array}{rccc} \pi^+ & \to & \mu^+ + \nu_\mu \\ & & \mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e \end{array}$

- Prototypical source is
 Spallation Neutron Source
- SNS flux at 20 m $\Phi^{SNS} = 3 \times 10^7 \text{ s}^{-1} \text{ cm}^{-2}$

- 700 ns pulses at 60 Hz
 → ≈ 10⁻⁴ overall duty factor
- ≈ 1 GeV protons (few kaons)
 on liquid Hg target → ≈ 1 MW

SNS Neutron / Neutrino Source

¹F.T. Avignone & Yu. Efremenko, J. Phys. **G29** (2003) 2615-2628.

CEvNS Detectors for COHERENT

- Typically use dark matter detectors for CEvNS
 - □ Scalable (up to ton-scale)
 - □ Radiopure (duty factor helps)
 - □ Fast (correlate to beam pulse)
 - Low-detection threshold
 - *Nuclear- / electron-recoil ID
- Multiple targets:
 Csl, Ge, LXe for validation (optional: Nal and LAr)

 14 kg, 7 keVnr threshold, at 20 m could discover CEvNS: 500 events year⁻¹

^{*}CEvNS is typically a near threshold effect. Particle recoil ID tends to be difficult. *J.I. Collar et al., Nucl. Instrum. Meth. **A773** (2014) 56. arXiv:/1407.7524 [physics.in-det]

CEvNS Detectors for COHERENT

- Typically use dark matter detectors for CEvNS
 - □ Scalable (up to ton-scale)
 - □ Radiopure (duty factor helps)
 - □ Fast (correlate to beam pulse)
 - Low-detection threshold
 - *Nuclear- / electron-recoil ID
- Multiple targets:
 Csl, Ge, LXe for validation (optional: Nal and LAr)

^{*}CEvNS is typically a near threshold effect. Particle recoil ID tends to be difficult. 1J.I. Collar et al., Nucl. Instrum. Meth. **A773** (2014) 56. arXiv:/1407.7524 [physics.in-det]

CEvNS Detectors for COHERENT

- Typically use dark matter detectors for CEvNS
 - □ Scalable (up to ton-scale)
 - □ Radiopure (duty factor helps)
 - □ Fast (correlate to beam pulse)
 - Low-detection threshold
 - *Nuclear- / electron-recoil ID
- Multiple targets: Csl, Ge, LXe for validation (optional: Nal and LAr)

^{*}CE_vNS is typically a near threshold effect. Particle recoil ID tends to be difficult. ¹J.I. Collar et al., Nucl. Instrum. Meth. **A773** (2014) 56. arXiv:/1407.7524 [physics.in-det]

Siting and Backgrounds at SNS

CENNS at Fermilab BNB

A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

S. J. Brice,¹ R. L. Cooper,^{2,*} F. DeJongh,¹ A. Empl,³ L. M. Garrison,² A. Hime,⁴ E. Hungerford,³ T. Kobilarcik,¹ B. Loer,¹ C. Mariani,⁵ M. Mocko,⁴ G. Muhrer,⁴ R. Pattie,⁶ Z. Pavlovic,⁴ E. Ramberg,¹ K. Scholberg,⁷ R. Tayloe,² R. T. Thornton,² J. Yoo,¹ and A. Young⁶
 ¹Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

 ²Indiana Accelerator Laboratory, Batavia, Illinois 60510, USA
 ²Indiana University, Bloomington, Indiana 47405, USA
 ³University of Houston, Houston, Texas 77204, USA
 ⁴Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
 ⁵Virginia Tech, Blacksburg, Virginia 24061, USA
 ⁶North Carolina State University, North Carolina 27695, USA
 ⁷Duke University, Durham, North Carolina 27708, USA (Received 25 November 2013; published 3 April 2014)

¹S.J. Brice et al., Phys. Rev. **D29** (2014) 072004. arXiv:/1311.5958 [physics.in-det]

Far-Off-Axis Approach for CENNS

- 8 GeV protons on thick Be target, horn focused mesons
- Far-off-axis predominantly decay-at-rest pions
- Siting at BNB can potentially be very close and/or easy
- $\Phi^{\text{BNB}} = 5 \times 10^5 \text{ s}^{-1} \text{ cm}^{-2}$ (20 m, cos θ < 0.5)

¹S.J. Brice et al., Phys. Rev. **D29** (2014) 072004. arXiv:/1311.5958 [physics.in-det]

Far-Off-Axis Approach for CENNS

- 8 GeV protons on thick Be target, horn focused mesons
- Far-off-axis predominantly decay-at-rest pions
- Siting at BNB can potentially be very close and/or easy
- $\Phi^{\text{BNB}} = 5 \times 10^5 \text{ s}^{-1} \text{ cm}^{-2}$ (20 m, cos θ < 0.5)

¹S.J. Brice et al., Phys. Rev. **D29** (2014) 072004. arXiv:/1311.5958 [physics.in-det]

MiniCLEAN: SNOLab → Fermilab

 Single-phase, LAr has copious VUV scintillation, 500 kg fiducial, radioactive purity ≈ 100 CENNS events / year, discovery and constrain nonstandard interactions

Elastic Scattering Connection: v, n, χ

- Many indistinguishable sources of few × 10 keV nuclear recoils
- Must measure neutron fluxes

SciBath Neutron Measurements at BNB

¹R. Cooper et al. arXiv:/1110.4432 [hep-ex]

²S.J. Brice et al., Phys. Rev. **D29** (2014) 072004. arXiv:/1311.5958 [physics.in-det]

SciBath Neutron Measurements at BNB

WIPAC 2015 -- R.L. Cooper

CEvNS: A Phased Approach

Phase	Detector Scale	Physics Goals	Comments
Phase 1	10-100 kg	First Detection	Precision flux not needed
Phase 2	100 kg – 1 ton	SM tests, NSI searches	Becoming systematically limited
Phase 3	1 ton – multi-ton	Neutron structure, neutrino magnetic moment	Systematics control a dominant issue; multiple targets useful

- Much of the detectors, technology, and infrastructure in-place or will soon exist
- First results could be very soon!

¹Table from K. Scholberg at Coherent NCvAs mini-workshop at FNAL

Status of CEvNS Efforts

COHERENT at SNS

- Some existing funding in place for current shielding and NIN tests
- Will pursue DOE funding later this summer
- Could see first light 2015-2016!

CENNS at BNB

- MiniCLEAN could be moved by 2018
- Conclusive 7σ discovery in LAr in one year of running
- Developing 10-kg LAr prototype for neutron response and rates

BACKUPS

SciBath Detector

- 80 L open volume of mineral oil based liquid scintillator
- Neutrons recoil off protons, create scintillation
- 768 wavelength shifting fibers readout
- IU built custom digitizer: 12 bit, 20 MS / s

BNB Neutron Energy Spectrum

- *E_n* unfolded from PEs spectrum simulation of detector response
- 2.44 ± 0.34 pulse⁻¹ m⁻² (*E_n* > 40 MeV)
- Lose sensitivity > 200 MeV;
- Neutron spectrum
 20 m from BNB

Validation of Unfolding Techniques

Total Neutrons per Day per 20 MeV

- Cosmic ray neutron spectrum also unfolded
- Gordon et al., IEEE TNS 51, (2004) 3427 parameterizes surface neutron flux from Bonner sphere data
- Energy shape matches, overall scale factor needed

Beam Off-Target Rates (> 0.5 MeV)

MI-12 Neutron Background Run

- Neutron flux ~20 m from target
- In-line behind beam target (ground)
- 29 Feb. 23 Apr., 2012
- 4.9x10¹⁹ total protons on target (POT) (4.5x10¹² per pulse)

Utility Trailer for BNB Measurement

Summary of BNB Work for CENNS

