Signatures of dark matter sterile neutrinos in corecollapse supernovae

NASA, ESA, R. Sankrit and W. Blair

M. Warren, G. Mathews, J. Hidaka, T. Kajino, and M. Meixner

IPA 2015 May 5th, 2015 Signatures of dark matter sterile neutrinos in corecollapse supernovae & Solving the supernova rate problem with supernova relic neutrinos

NASA, ESA, R. Sankrit and W. Blair

M. Warren, G. Mathews, J. Hidaka, T. Kajino, and M. Meixner

IPA 2015 May 5th, 2015

Sterile neutrinos in CCSNe

Matter-enhanced neutrino oscillations

- Neutrinos experience potential when moving through matter
 - Interactions with electrons, nucleons, other neutrinos...

$$V_e(r) = \frac{3\sqrt{2}}{2} G_F n_B \left(Y_e + \frac{4}{3} Y_{\nu_e} - \frac{1}{3} \right)$$

 Potential *difference* enhances oscillations

5

 $E_{res} = \frac{\Delta m_s^2}{2V_c} \cos 2\theta_s$

 Resonance: *Maximal* mixing (even for small vacuum mixing)

$$\sin^2 2\theta_M = \frac{\left(\Delta m_s^2 / 2E_\nu\right)^2 \sin^2 2\theta}{\left(\left(\Delta m_s^2 / 2E_\nu\right) \cos 2\theta - V\right)^2 + \left(\Delta m_s^2 / 2E_\nu\right)^2 \sin^2 2\theta}$$

PHYSICAL REVIEW D 74, 125015 (2006)

Dark matter sterile neutrinos in stellar collapse: Alteration of energy/lepton number transport, and a mechanism for supernova explosion enhancement

Jun Hidaka* and George M. Fuller[†]

PHYSICAL REVIEW D 76, 083516 (2007)

Sterile neutrino-enhanced supernova explosions

Jun Hidaka* and George M. Fuller[†]

Allow for $\nu_e \leftrightarrow \nu_s$ oscillations: $m_s = 3 \,\text{keV} \,\sin^2 2\theta_s = 10^{-9}$

Sterile Neutrino Dark Matter

Decaying sterile neutrinos

 $\nu_s \to \gamma + \nu_\alpha$

Decay width in $\mathcal{V}MSM$

$$\Gamma_{\nu_s \to \gamma \nu_\alpha} \sim \sin^2 2\theta_s m_s^5$$

- Compare x-ray background with flux from galaxy or cluster
- Measured in Andromeda galaxy and Perseus cluster (Boyarsky et al (2014))
- Assume dark matter is 100% sterile neutrino

$$E_{\gamma} = 3.518^{+0.019}_{-0.022} \text{ keV}$$

 $m_s = 7.06 \pm 0.05 \text{ keV}$

University of Notre Dame/Lawrence Livermore National Laboratory Model

- Spherically symmetric model
 - General relativistic hydrodynamics
 - Neutrino transport and interactions
 - Nuclear burning
 - Equation of state

Enhanced Explosion Energy

Warren et al (2014) DM bounds from Boyarsky et al (2006)

Successful explosion in a model that would <u>not</u> otherwise explode

Without sterile neutrino

With sterile neutrino

Warren et al (2014)

Example: $m_s = 5.012 \text{ keV}$ and $\sin^2 2\theta_s = 1.12 \times 10^{-5}$

Warren et al (2014)

Expanded Neutrinosphere

Warren et al (2014)

Luminosity Fluctuations

Warren et al (2014)

In conclusion (part I)

1. Supernova models don't explode

(Or explode with too little energy...)

- 2. Sterile neutrinos can enhance explosion energies
- 3. Parameter space overlaps with sterile neutrino dark matter candidates

Happy coincidence or ...?

Supernova Rate Problem

Mathews et al (2014)

Multiple wavelength observations of massive star formation regions

Horiuchi et al (2011)

Possible Solutions

- 1. O-Ne-Mg SNe : $M \sim 10-12 M_{\odot}$
 - Optically dim, but large neutrino flux
- 2. Failed SNe : $M > 25 M_{\odot}$ black hole formation
 - Optically dim, but large short-duration neutrino flux
- Question: Can one distinguish these possibilities by detecting supernova relic neutrinos?

$$\frac{dN_{\nu}}{dE_{\nu}} = \frac{c}{H_0} \int_0^{z_{max}} R_{SN}(z) \frac{dN_{\nu}(E'_{\nu})}{dE'_{\nu}} \frac{dz}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}}$$

Model Uncertainties

Mathews et al (2014)

Distinguishing Features

Hyper-Kamiokande Assumes all of missing SNe are fSNe or ONeMg

Peak and spectrum shifts for:

- Equation of state
- Mass hierarchy
- Neutrino oscillations

Kajino et al (2014)

In conclusion (part 2)

- Many uncertainties
 - Primarily from SN models
- Detecting the relic neutrino background may provide insight into:
 - Supernova rate problem
 - Nature of neutrinos
 - Supernova environment

Thank you!

Sterile Neutrinos: arXiv:1405.6101 PhysRevD **90**, 103007 (2014) In prep (2015)

Relic Neutrino Background: arXiv:1405.0458 ApJ **790**, 115 (2014) In prep (2015)

Mathews et al (2014)