From Hess to HESE:

Intro to IceCube Astrophysical Neutrino Analysis

Jim Braun 2014 Madison Bootcamp

Elevation	Rate
Ground	12
1km	10
2 km	12
3.5 km	15
5 km	27

"The results of these observations seem best explained by a radiation of great penetrating power entering our atmosphere from above."

Victor F. Hess, Nobel Laureate

Physikalische Zeitschrift, 13:1084-1091, November 1912.

A Local Accelerator: Solar Flare

flows of charged particles result in large B-fields

Hillas formula :

accelerator must contain the particles

cassiopeia A supernova remnant in X-rays

acceleration when particles cross high B-fields

Microquasar

Relativistic shocks In jets

sources accommodating the observed energy budget

active galaxy

supermassive black hole collapse of massive star produces a

Simulated Images

gamma ray burst

spinning black hole

neutrinos are produced in the interactions of fireball protons (cosmic rays) with synchrotron photons

Cosmic Messengers

π+, π

π0

- Photons and neutrinos are produced at cosmic ray sources and point back to the source
- Photons with E > ~10 TeV are attenuated at ~Mpc distances
- Expect approx. 1:1:1 neutrino flavor ratio at Earth due to oscillations

Air Showers

Interaction of cosmic ray in the atmosphere produces a shower of particles

Charged particles produce Cherenkov/Fluorescence light in the atmosphere and in surface detectors

Charged pions from cosmic ray showers produce highly penetrating muons and neutrinos

Photons produce an electron/ photon (electromagnetic) cascade

Cosmic Ray Anisotropy

Anisotropy in cosmic ray arrival directions at ~TeV energies Not yet understood

TeV Photon Astronomy

TeV Photon Astronomy

TeVCat: 148 Cataloged TeV photon sources

Cygnus region : Milagro

translation of TeV gamma rays into TeV neutrinos :

$3 \pm 1 v$ per year in IceCube per source

Galactic and extragalactic cosmic rays

GZK feature

cosmic rays interact with the microwave background

$$p + \gamma \rightarrow n + \pi^+ and p + \pi^0$$

cosmic rays disappear, neutrinos appear

$$\pi \to \mu + \upsilon_{\mu} \to \{e + \upsilon_{\mu} + \upsilon_{e}\} + \upsilon_{\mu}$$

1 event per cubic kilometer per year ...but it points at its source

Neutrino Astronomy

Observe neutrinos via weak interactions:

Neutral Current (NC): Z exchange Hadronic cascade

Charged Current (CC): W exchange Energetic cascade + lepton track

W production:

Cascades from electron antineutrinos Glashow resonance at ~6.3 PeV

Interaction cross sections are tiny, but increase with energy

Observe cascades and tracks via Cherenkov emission

→ Need large volume ~O(km³) of transparent medium

D. Chirkin, arXiv:hep-ph/0407075

icecube / Deep Cole

- 5160 optical sensors between 1.5 ~ 2.5 km
- 10 GeV to infinity

absorption length

scattering length

scattering length

Neutrino event signatures

CC Muon Neutrino

track (data)

Neutral Current / Electron Neutrino

 $\nu_{\rm e} + N \rightarrow {\rm e} + X$ $\nu_{\rm x} + N \rightarrow \nu_{\rm x} + X$

cascade (data)

"double-bang" and other signatures (simulation)

PeV+; Not yet observed

Event Reconstruction

- Angle reconstruction: Fit photon arrival times to best track. Long tracks provide lever arm!
- Energy Reconstruction: Fit number and pattern of detected photons to best energy loss

Much more from Claudio on Thursday

Tracks	Cascades
Tracks	Cascades

Angle: 0.5° - 1° Energy: Factor of ~2 **Angle**: 15°+ **Energy**: ~15%

These analysis channels have very different characteristics!

Energy Reconstruction of Muons

IceCube Events

Most events are downgoing muons from cosmic ray air showers: 2.5 kHz

~few in 10⁻⁶ are muons from atmospheric neutrinos

~few in 10⁻¹⁰ are neutrinos from astrophysical sources

Goal: Isolate events from astrophysical sources

Earth Absorption

"Upgoing"

Earth Absorption

 Cosmic ray muons only penetrate ~10 km and are absorbed for θ > 85°

- PeV neutrinos are absorbed for θ > ~135°
- Attenuation energy for $\theta = 180^{\circ}$ is ~30 TeV

[&]quot;Upgoing"

Reducing the Cosmic Muon Background

- Zenith angle (θ): Cosmic ray muons cannot reach IceCube for $\theta > 85^{\circ}$
 - Tails of point-spread function (PSF) are large
 - Quality cuts required to eliminate misreconstructed upgoing events
- **Topology:** Cascades or muons that start inside the detector must be from neutrinos
 - Requires implementation of a veto/filter to exclude throughgoing events
- Energy: Expect E⁻² E^{-2.6} for astrophysical neutrinos Backgrounds fall much more sharply (~E^{-3.7})

Optimize selection using simulated data

Atmospheric Neutrinos

Constrain energy spectrum (~E^{-3.7}) Study prompt atmospheric component "Beam" for performing fundamental physics

Atmospheric Neutrinos

Further Reduction of Background Events

- Energy: Expect E⁻² E^{-2.6} for astrophysical neutrinos. Backgrounds fall much more sharply (~E^{-3.7})
- **Space Angle:** Expect astrophysical neutrinos to cluster around source direction according to the detector PSF
- **Time:** In the case of a burst or flare, expect time dependence in neutrinos produced by the source

Analysis Type	Energy	Space Angle	Time
Diffuse	X		
Point Source	Х	Х	
Time-dep. point source	X	X	X

Diffuse Analysis

- Search for an astrophysical neutrino flux
 - Do not care where the neutrinos come from
 - Use various techniques to reduce the background:
 - Upgoing muons, cascades, high energy starting events (HESE)
- Isolate astrophysical component using event energy:
 - Events more closely matching an ~E⁻² spectrum are more likely to be from the source

Fit data set to atmospheric + E⁻² to determine the astrophysical flux

Compare to fit with no E⁻² component to determine significance

Dependent on simulated data and sensitive to systematics

Upgoing Muon Analysis

Upgoing Muon Analysis

Highest energy event

0.5 PeV muon

Examples of muons found in IC79/86 upgoing diffuse analysis

Also found in HESE

HESE: High-energy starting events

- Complete sky coverage
- Flavor determined
- Some will be muon neutrinos with good angular resolution

3-Year HESE Results: IC-79 + IC-86

Expected background: 15 events

3-Year HESE Results: IC-79 + IC-86

3-Year HESE Results: IC-79 + IC-86

Point Sources

• Search for a localized astrophysical neutrino excess

- Assume a source location hypothesis (e.g. the Crab nebula)
- Events close to the source location (relative to the angular resolution) are more likely to be from the source
- Events more closely matching an ~E⁻² spectrum are more likely to be from the source (similar to the diffuse analysis)

Not significant

Point Sources

• Search for a localized astrophysical neutrino excess

- Assume a source location hypothesis (e.g. the Crab nebula)
- Events close to the source location (relative to the angular resolution) are more likely to be from the source
- Events more closely matching an ~E⁻² spectrum are more likely to be from the source (similar to the diffuse analysis)

• Example swath of sky:

Significant clustering at source location

• Key: We can generally evaluate significance from the data itself

Point Sources: Likelihood Approach

- Source hypothesis spatial location: x_s; location of event i: x_i
 → Space angle difference: |x_i x_s|
- Source likelihood: $S_i = \frac{1}{2\pi \cdot \sigma_i^2} exp(-\frac{|\vec{x}_i \vec{x}_s|^2}{2\sigma_i^2})$

Gaussian probability Event angular resolution

- Events with better angular resolution produce a sharper likelihood
 → Prefer tracks over cascades
- Background likelihood: $\mathcal{B}_i = F(\vec{x}_i)$
- Treat N data events as mixture of source + background:

$$\mathcal{L}(\vec{x}_s, n_s, \gamma) = \prod_{i=1}^N \left(\frac{n_s}{N} \mathcal{S}_i + (1 - \frac{n_s}{N}) \mathcal{B}_i \right)$$

• Maximize likelihood w.r.t. n_s; compare to likelihood without source:

$$\lambda = -2 \cdot log \left[\frac{\mathcal{L}(\vec{x}_s, n_s = 0)}{\mathcal{L}(\vec{x}_s, \hat{n}_s)} \right]$$

• Large λ favors source hypothesis

Point Sources: Likelihood Approach

- Source hypothesis spatial location: x_s; location of event i: x_i
 → Space angle difference: |x_i x_s|
- Source likelihood: $S_i = \frac{1}{2\pi \cdot \sigma_i^2} exp\left(-\frac{|\vec{x}_i \vec{x}_s|^2}{2\sigma_i^2}\right) \cdot P(E_i|\gamma = 2)$

Gaussian probability Event angular resolution

- Events with better angular resolution produce a sharper likelihood
 → Prefer tracks over cascades
- Background likelihood: $\mathcal{B}_i = F(\vec{x}_i) \cdot P(E_i | Background)$
- Treat N data events as mixture of source + background:

$$\mathcal{L}(\vec{x}_s, n_s, \gamma) = \prod_{i=1}^N \left(\frac{n_s}{N} \mathcal{S}_i + (1 - \frac{n_s}{N}) \mathcal{B}_i \right)$$

• Maximize likelihood w.r.t. n_s; compare to likelihood without source:

$$\lambda = -2 \cdot log \left[rac{\mathcal{L}(\vec{x}_s, n_s = 0)}{\mathcal{L}(\vec{x}_s, \hat{n}_s)}
ight]$$

- Large λ favors source hypothesis
- Can include energy information

What if we do not know where to look?

Look everywhere!

- Perform analysis on a fine grid of source locations
- Grid feature spacing much smaller than angular resolution
- Most likely source location is the highest obtained significance
- Compare highest significance with that of datasets randomized in time to compute the significance

- Why not look everywhere?
 - Trials factor
 - Typical analysis: all-sky search + list of sources

3-Year HESE Sky Map

No significant clustering found

Point Sources: IC-40 + IC-59 + IC-79

North: Upgoing muons

Mostly atomspheric neutrinos

No significant source discovered

Time Dependent Point Source Analysis

- Suppose neutrino emission is time-dependent:
 - Reduce background by only looking at (or weighting toward) select times
- Two types of searches:
 - **Triggered**: We already have a hypothesis for the emission time structure
 - Untriggered: Search in time for a flare/burst at a specific location
- Triggered searches are more sensitive
- GRBs: Burst duration of <1 second 1000 seconds
 - IceCube is constraining GRBs cosmic ray models: Nature 484, 351-354 (2012)
- Other IceCube published time-dependent (non-GRB) searches:
 - Crab flare: **ApJ 745:45 (2012)**
 - Periodic sources: **ApJ 748:118 (2012)**
 - All-sky untriggered scan: ApJ 744:1 (2012)