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• Standard Model of Particle Physics

• Reasons to go beyond

• What Icecube can do?

• Indirect signal for the decay or annihilation of new particles.

• Direct detection of new particles.

• Neutrino oscillations and neutrino oscillations as a window to new

physics.
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• Neutrinos oscillations(Massive ν)!!

• Gravity is not included in a consistent way

• The SM doesn’t look very natural(mtop ≈ 1011mν)

The same ratio as a human and Mont Everest mass!

• Cosmology can not be explained with just Gravity + SM

• The prediction for the Vacuum energy is 10120 orders of magnitude

off!

• Apparently only 4.9% of the energy in the universe if from the SM.
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• Large scale cosmological observations tells us that the baryonic

matter is only 15% of the total matter in the Universe.
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A.Vallenari et.al. A&A 451, 125–139 (2006)

• Local measurements of

the galaxy kinematics

suggest an important

contribution from the halo
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WIMP?
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The WIMP Miracle

• Heavy particle initially in thermal equilibrium

• The thermal relic density is

Ωx ∝ 1

< σv >
≈ m2

X

g4X

• But we get the right number with a physical scale already in the

standard model!! Electroweak Scale

mX ≈ 100GeV, gX ≈ 0.6 → ΩX ≈ 0.1
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No WIMPS are also possible, even in the standard model (QCD?)

photo of a non trivial gauge configuration produced during the QCD phase transition in the early universe
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• The DM particles may decay in SM particles(may be ν)

• Possible signals:

• Galactic Center

• Sun(High density because the capture) If there is not an extra dark

mediator is a low energy search.
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90% exclusion for the SD and SI cross sections
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• May be we are already measuring new physics, where the HESE ν
com from?:

• Superheavy Particle Origin of IceCube PeV Neutrino Events

(s-channel enhancement of neutrino-quark scattering)

(1305.6907) Vernon Barger & Wai-Yee Keung

• Neutrinos at IceCube from Heavy Decaying Dark Matter

(Explore models focused on the 2 events at 1PeV, mono-energetic

line )

(1303.7320) Brian Feldstein et.al.

• Are IceCube neutrinos unveiling PeV-scale decaying dark matter?

(Generic signatures in the energy spectra)

(1308.1105) Arman Esmaili & Pasquale Dario Serpico

• Geometric Compatibility of IceCube TeV-PeV Neutrino Excess and

its Galactic Dark Matter Origin (Spatial distribution analysis and

spectra)

(1311.5864) Yang Bay, Ran Lu & Jordi Salvado
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• Relativistic Monopoles

• Mildly Relativistic Monopoles

• Non-Relativistic GUT Monopoles, Nuclearites (Strangelets), Q-balls,

etc...

• SUSY searches (double Sleptons)

• TeV Gravity
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• Monopols are topological defects of the gauge field that appear

typically in phase transitions(big bang).

• The classical equations for a gauge field are:

F = dA

d ∗ dA = J

• ddw = 0 for all w
• They are expected to be produced in the early universe during the

GUT phase transitions
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• Ultra high energies CR may produce new particles(SUSY, TeV Gravity)

• SUSY a possible signal is two parallel track-like events

• With extra dimensions the effective 4D GN becomes smaller, making

possible to produce BH from CR
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SUSY double stau and BH signal
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Neutrino oscillations : mass eigenstates (νi; i = 1, 2, 3) and flavor

eigenstates (να; α = e, µ, τ ) are not the same.

[B. Kayser, hep-ph/0506165 (2004)]

[C. Gonzalez-Garcia et al., JHEP 12 (2012)]

∆m2
sol = 7.5× 10−5eV2

|∆m2
atm| = 2.4× 10−3eV2

νi =
∑

β

Uβiνβ
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In two generations the oscillation probability at a given distance L and

energy E in vacuum

Pνα→να

(

L

E

)

= 1− sin2 2θ sin2
(

∆m2L

4E

)

• sin2 2θ : oscillation amplitude

• ∆m2: oscillation frequency

• L/E ≪ 1/∆m2 → no oscillations

• L/E ∼ 1/∆m2 → oscillations

• L/E ≫ 1/∆m2 → fast oscillations

("averaged")
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Icecube is able to measure atmospheric neutrinos produced by the CR in

the atmosphere

Shows that the oscillation picture is consistent also at high energies
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• LSND found ν̄µ → ν̄e oscillation with ∆m2 ∼ 1eV 2 and

sin2 2θ ∼ 0.003

• MiniBoone νµ → νe and ν̄µ → ν̄e appearance

• No significant excess at high energies (E > 475 MeV)

• Unexplained events at low energies, interpretation as oscillations

similar to LSND: ∆m2 ∼ 1eV 2

• Gallium Anomaly, SAGE and GALLEX event rates lower than

expected, can be explained by νe disappearance with ∆m2 ≥ 1eV 2

• New reactor flux calculation (Mueller et al., 1101.2663, P. Huber,

1106.0687) 3% higher, tension in short-baseline (L ≤ 100m)

experiments, can be explained by νe disappearance with oscillation

with ∆m2 ∼ 1eV 2.
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More Motivation? ... cosmology ...

• ΛCDM+Neff with WMAP9 + spt + act Neff = 3.89± 0.67(68%CL)

• ΛCDM+mν with WMAP9 + spt + act + SN1a
∑

mν < 0.56eV (95%CL)

• wΛCDM+mν with WMAP9 + spt + act + SN1a
∑

mν < 1.2eV (95%CL)

• ΛCDM+mν +Neff with Planck + WP +spt + act
∑

mν < 0.6eV Neff = 3.29+0.67
−0.64(95%CL)

• ΛCDM+mν +Neff with Planck + WP +spt + act +BAO
∑

mν < 0.28eV Neff = 3.32+0.54
−0.52(95%CL)

• ΛCDM+mν +Neff with Planck + WP + Bicep2
∑

mν < 0.81eV ∆Neff = 1.08+0.49
−0.61Maria Archidiacono et.al. arXiv:1404.1794

[Planck Collaboration, arXiv:1303.5076]
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Experiments : Losc = 2π E
∆m2
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In the Earth for sterile neutrino ∆m2 = O(1eV 2) the MSW effect happens

when

Eν =
∆m2 cos 2θ

2
√
2GFN

∼ O(TeV )
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Oscillogram φ3+1
µ /φini

µ for ∆m2
41 = 1eV 2, sin(2θ24)

2 = 0.251
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Oscillogram φ3+1
µ /φini

µ for ∆m2
41 = 1eV 2, sin(2θ24)

2 = 0.251
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• Due to the coherent interactions Neutrino oscillations can be very

sensitive to new physics at higher scales

• Lorentz Violation

• NSI
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H± ≡ ∆m2

4E
Uθ
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sign for ν ν̄

ξ1 = ξvep ∆δ1 = 2|φ|(γ1 − γ2) ≡ 2|φ|∆γ ≤ 1.6× 10−24 , forVEP

ξ1 = ξvli , ∆δ1 = (c1 − c2) ≡ δc/c ≤ 1.6× 10−24 , forVLI

ξ0 = ξQ , ∆δ0 = Q(k1 − k2) ≤ 6.3× 10−23 GeV , for coupling to torsion

ξ0 = ξ 6CPT , ∆δ0 = b1 − b2 ≤ 5.0× 10−23 GeV , for /CPT , VLI

[M.C. Gonzalez-Garcia, F.Halzen, M.Maltoni, ArXiv:0502223]
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