High $p_{\rm T}$ muons from cosmic ray air showers in IceCube ...going a bit more into detail

Dennis Soldin

University of Wuppertal

muon workshop Madison 2015

BERGISCHE UNIVERSITÄT WUPPERTAL

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Outline

1 Introduction

- Physics
- Signal signature

2 Simulation

- Concept
- p_{T} and energy spectra
- Propagation/Decay
- In-ice distributions

Open issues

Signal signature

- High energy cosmic ray interactions can produce secondaries with large transverse momentum p_T
- Mesons that decay into muons: **conventional**: π^+, K^+, K^0 **prompt**: $D^+, D^0, D^+_s, \Lambda_c, \Omega^0_c, B^+, B^0, B^+_c, \lambda^0_b$ **unflavored**: $\eta, \eta', \omega, \rho^0, \phi$ and anti-particles.
- Isolated muons (LS muons) separate from the shower core while travelling to the detector → double track signature in IceCube
- Lateral separation:

$$d_{\mathrm{T}} = rac{p_{\mathrm{T}} \cdot H}{E_{\mu} \cdot \cos(heta)}$$

LS muon production

Open issues 000

Signal signature

$$d_{\mathrm{T}} = rac{p_{\mathrm{T}} \cdot H}{E_{\mu} \cdot \cos(heta)}$$

• Minimal resolvable track separation: $\sim 135~{\rm m}$

[R. Abbasi et al., Phys. Rev. D 87, 012005 (2013)]

- Typical muon energy: $\sim 1 \text{ TeV}$
- ightarrow Minimal $p_{\rm T}$: \sim 2 GeV ightarrow pQCD regime!

 \rightarrow 'High $p_{\rm T}$ ' refers to $p_{\rm T}>2$ GeV and E>500 GeV

Concept

Simulate muon bundle and LS muon separately:

• Muon bundle obtained from pre-simulated CORSIKA dataset (11499, 11637)

LS muon:

- Primary energy, interaction height, direction from CORSIKA dataset
- $p_{\rm T}$, energy distributions and production probability of high $p_{\rm T}$ mesons from any HE interaction model using CRMC*
- Propagation and decay into muons
- LS muon in-ice propagation (PPC)
- Detector response and Level2 filtering
- *[C. Baus et al., http://web.ikp.kit.edu/rulrich/crmc.html (2013)]

Meson transverse momentum

- Assumption: High *p*_T particle production only in primary interaction
- Simulate 100000 collisions using CRMC for initial energies $\log_{10}(E_{\text{prim}}) = 3.0, 3.1, \dots, 9.0$
- EPOS-LHC and HIJING 1.3
- Initial particles: proton/iron
- Target particle: nitrogen
- **Power law fits** applied to final state meson *p*_T distributions:

$$N(p_{\mathrm{T}}) = a \cdot p_{\mathrm{T}}^{b}$$

Open issues

Composition

 $p_{\rm T}$ spectra sensitive to mass composition!

Meson transversal momentum

- **Spectral indices** *b* as a function of primary energy (spline interpolation)
- Secondary meson's $p_{\rm T}$ is generated from power law distribution with b according to the primary energy obtained from CORSIKA

Meson energy

- Meson **energy distributions** obtained from EPOS and HIJING simulations (spline interpolation)
- Secondary meson's energy is generated from spline of the distribution closest to the primary energy

Production probability

- Probability to produce a high $p_{\rm T}$ meson as a function of primary energy obtained from EPOS and HIJING simulations (spline interpolation)
- Production probability according to the initial primary energy incorporated via **event weighting**

LS muon production

11/26

[M. Thunman et al., Astropart. Phys. 5 (1996) 309]:

Compare distance to point of decay

$$L_{
m dec}(E) = -c\beta\gamma\tau_M\ln(R_1)$$

and distance to point of re-interaction

$$L_{\mathrm{int}}(E) = H + h_0 \cdot \ln\left(e^{-H/h_0} - \frac{\lambda_M \cdot \ln(R_2)}{X_0}\right),$$

of secondary mesons M until $\mathit{L}_{\rm dec} < \mathit{L}_{\rm int}$ where

$$\lambda_{M} = \frac{\rho(H)}{\sum_{A} \sigma_{M}(E) \cdot n_{A}(H)} \simeq \frac{\langle A \rangle}{\sigma_{M}(E) \cdot N_{0}}$$

Decay probability: $P_{\text{dec}} = n_{\text{try}}^{-1}$

 $(\gamma = E/m_M; \text{ lifetime } \tau_M; \text{ speed } \beta; \text{ density } \rho; \ h_0 = 6.4 \text{ km}; \ X_0 = 1300 \text{ g/cm}^2; \ R_1, R_2 \text{ random numbers} \in [0, 1])$

Decay channels

Decay	BR	M abundance
pion $\rightarrow \mu$		
$\pi^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$	0.9998	0.2084
kaon $\rightarrow \mu$		
$K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$	0.6355	0.0776
$\kappa_L^0 \rightarrow \mu^{\pm} \pi^{\mp} \nu_{\mu}$	0.2704	$0.5 \cdot 0.0762$
prompt $\rightarrow \mu$		
$D^{\pm} \rightarrow \mu^{\pm} + X$	0.1760	0.0042
$D^0 ightarrow \mu^{\pm} + X$	0.0670	0.0042
$unfl \rightarrow \mu$	•	
$\eta \rightarrow \mu^+ \mu^- \gamma$	$3.1 \cdot 10^{-4}$	0.0765
$\eta' ightarrow \mu^+ \mu^- \gamma$	$1.1 \cdot 10^{-4}$	0.0197
$\omega ightarrow \mu^+ \mu^- \pi^0$	$1.3 \cdot 10^{-4}$	0.0380

Decay	BR	M abundance	
kaon $\rightarrow \pi$			
$K_I^0 \rightarrow \pi^{\pm} e^{\mp} \nu_e$	0.4055	0.5 · 0.0762	
$\kappa_l^0 \to \pi^{\pm} \mu^{\mp} \nu_{\mu}$	0.2704	0.5 · 0.0762	
$\kappa_S^0 \rightarrow \pi^+ \pi^-$	0.6920	0.5 · 0.0762	
$unfl \rightarrow \pi$			
$\eta \rightarrow \pi^+ \pi^- \pi^0$	0.2810	0.0765	
$\eta \rightarrow \pi^+ \pi^- \gamma$	0.2292	0.0765	
$\eta' \to \mu^{\pm}$	0.4290	0.0197	
$\phi \rightarrow \pi^+ \pi^- \pi^0 + \rho \pi$	0.1532	0.0246	
$\rho^{\pm} \rightarrow \pi^{\pm} \pi^{0}$	~ 1	0.1836	
$\rho^0 \rightarrow \pi^+ \pi^-$	~ 1	0.1457	
$\omega \rightarrow \pi^+ \pi^- \pi^0$	0.8920	0.0380	
$unfl \rightarrow K$			
$\phi \rightarrow K^+ K^-$	0.4890	0.0246	
$\phi \rightarrow K^0_L K^0_S$	0.3420	0.0246	

$$\langle BR \rangle = \frac{\sum_{M} a_{M} \cdot BR_{M}}{\sum_{M} a_{M}}$$

 a_M : abundance of meson M

• Energy distributions after decay from PYTHIA 8

 $M
ightarrow \mu$

• Energy distributions after decay from PYTHIA 8

 $M
ightarrow \pi$

• Energy distributions after decay from PYTHIA 8

M
ightarrow K

Primary spectrum

- Re-weighting to any model of interest
- This work: TIG parametrization

$$\frac{dN}{dE} \left[\frac{\mathrm{nucleons}}{\mathrm{cm}^{2} \mathrm{s} \, \mathrm{sr} \, \mathrm{GeV}/\mathrm{A}} \right] = \begin{cases} 1.7 \cdot E^{-2.7} & \text{for } E \leq 5 \cdot 10^{6} \, \mathrm{GeV} \\ 174 \cdot E^{-3} & \text{for } E > 5 \cdot 10^{6} \, \mathrm{GeV} \end{cases}$$

[M. Thunman et al., Astropart. Phys. 5 (1996) 309]

• Pure-proton & pure-iron

Open issues 000

In-ice distributions (proton, EHE filter)

$\pmb{p}_{\rm T}$ distributions in IceCube

No $d_{\rm T}$ cut

Spectral index: -4.41 ± 0.025

Spectral index: -2.86 ± 0.091

Open issues

In-ice distributions (proton, EHE filter)

Composition studies in bins of primary energy or related observable

Open issues 000

In-ice distributions (proton, EHE filter)

Energy spectrum in IceCube

 $d_{\mathrm{T}} = rac{p_{\mathrm{T}} \cdot H}{E_{\mu} \cdot \cos(heta)}$

Open issues 000

In-ice distributions (proton, EHE filter)

Lateral separation distribution in IceCube

Open issues 000

In-ice distributions (proton, EHE filter)

Lateral separation distribution in IceCube

Open issues 000

Interaction height

Open issues 000

In-ice distributions (proton, EHE filter)

LS muon flux in IceCube (PRELIMINARY!)

- $\bullet\,$ Event rate in IC86: \sim 0.3 mHz, IC59: ~ 1.1 mHz
- Why?

Open issues

Track separations vs. transversal momentum

- Significant flux from lower $p_{\rm T}$ at low muon energies!
- Go to lower $p_{
 m T}~(\sim 1.5~{
 m GeV})$
- Also lower E_{μ} ?

CORSIKA simulation

- Interaction height fix'
 - \rightarrow Write 'CorsikaInteractionHeight' to frame
- LE dataset: 11499
 - E^{-2.6}
 - $\bullet~600~GeV$ $10^5~GeV$
 - SpiceLea
- HE dataset: 11637

- $\bullet~10^5~\text{GeV}$ $10^{11}~\text{GeV}$
- SpiceMie

Thank you!

BERGISCHE UNIVERSITÄT WUPPERTAL

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Backup

$p_{\mathrm{T}} \leftrightarrow$ energy correlation

Primary energy (proton)

Zenith angle distribution (proton)

Meson-air cross sections

High $p_{\rm T}$ meson abundance (EPOS)

p_{T} power law fits

Energy splines

