Ultra-Forward High Energy Muons with Small Showers

Joulien Tatar on behalf of Trine Poulsen (Gary Binder, Chang Hyon Ha, Spencer Klein, Mario Solano)

Lawrence Berkeley National Lab and UC Berkeley

What are Ultra-Forward Muons?

- Highly energetic in-ice muon events with small coincident IT showers.
 - Most likely due to CR (protons) interaction where most energy given to a single muon.
 - Direct probe to start of CR showers.
 - Prompt muon production.
 - Background for neutrino searches.

Real Event #1

Real Event #2

Event Selection

- Start with IC data
 - Select events with Q > 5000 P.E.
 - Reconstruct Event Track (SPEFit4)
 - Must pass through IT.
- Applied to four years of burn sample (IC79, IC86-1/2/3)

CORSIKA Simulations

- Proton and Iron Showers
 - 6000000 Showers each (oversampling each shower 100 times)
 - Energy: 100TeV to 100PeV
 - Zenith Angle: 0 to 10 deg
 - E spectrum used for generation, reweighted for E
 - SIBYLL 2.1
- Muon Showers
 - 200000 showers (oversampling each shower 100)
 - Energy: 1TeV to 100PeV
 - Zenith Angle 0 to 45 deg
 - _-1
 - E spectrum used for generation

Cut Variables of Interest

- IC Total Charge: Q > 5000 P.E.
 - Truncated mean used for energy reco.
- Balloon Parameter: b < 0.8
 - Highest DOM Q / Total Q of Event
- IT Radius: r < 400m
 - Reconstructed track's distance from center of IT.

Energy Reconstruction Distributions

- Ratio of reconstructed surface energy to true primary energy.
- S125 used for Laputop, S80 may be better for the smaller showers.
- Factor of 2 shift going from E⁻¹ to E^{-3.7} muon spectrum.

Surface / Muon Energy

- Peaks at the right place.
- Extended tail at small surface to muon energy.
- Overall distributions look as expected.

9

Need more MC

Data: Muon Energy

Data: Zenith Angle Distribution

χ^2 Variable

- Muon track binned in 120m width bins
 - >= 6 bins required (720m tracks)
- dE/dx calculated for each bin
- Linearly fit dE/dx

$$\chi^2 = \sum_{i=1}^{N_{bins}} \frac{\left(\frac{dE}{dx_i} - f(i)\right)^2}{\sigma_i^2}$$

χ^2 for Single Muon vs Bundle

- Single muons exhibit much more dE/dx variation than bundles due to their stochastic losses.
 - High $\chi^2 \rightarrow$ single muon
 - Low $\chi^2 \rightarrow$ muon bundle

χ^2 Distributions

$\chi^2 > 3$ Cut

- $\chi^2 > 3$ cut selects events with low surface to muon energy
- Gives an idea of expected rate of these single muon events

χ^2 vs Number IT Tanks

Events with high χ^2 have small number of IT tank hits. Events with low number of IT tanks hit \rightarrow low surface energy High $\chi^2 \rightarrow$ single muons

100TeV to PeV single muons with low accompanying EM showers

Conclusions

- Small surface to in-ice muon energy suggests these muons are produced at high Feynman-x.
- The events observed are consistent with single muons because of their high stochasticity.
- The energy of these muons suggests they may be prompt.
- Better targeted simulations are coming very soon and will be followed by an unblinding request.

Thank you for your attention.

N_lceTop_HLC vs chi^2

N_lceTop_HLC vs chi^2

Events with low number of hit IceTop DOMs mostly have a high chi^2 (single muon). The higher Q_InIce cut shows that especially events with a high InIce energy and low IceTop energy comes from single muons.

Ratio of surface and muon energy

Muons vs chi^2

N_IceTop_HLC vs chi^2 - Q>15000

