

Cosmic ray composition with muon bundles in IceCube

Sam De Ridder (Work from Tom F., Dennis S. and myself)

Collaboration Meeting Madison - Spring 2015 Muon workshop

Sam De Ridder (Ghent University)

Cosmic ray composition

Introduction

Cosmic ray composition and energy spectrum between 1 PeV and 1 EeV.

• Tom Feusels' analysis on IT73/IC79.

→ Presented on ICRC 2013.
https://wiki.icecube.wisc.edu/index.php/
IT73-IC79_Composition_Analysis

- 3 year analysis: (Tom F, S. De Ridder)
 - \rightarrow Add IC86-I, IC86-II.
 - \rightarrow Retrigger to IT73/IC79 (no IC86 simulation).

 \rightarrow Discovery of "Observation level bug" in simulation.

https://wiki.icecube.wisc.edu/index.php/IceTop_
3year_update

Cosmic ray reconstruction with IceTop

Cosmic ray reconstruction with IceTop

Reconstruction quality:

 \rightarrow Direction and position used from IceTop.

Muon bundle reconstruction with IceCube

Use track reconstruction from IceTop, reconstruct energy loss pattern along track using millipede (20 m track segments).

+ remove segments in dust layer and edge of detector. Fit profile to obtain average loss, select extremes.

Sam De Ridder (Ghent University)

Cosmic ray composition

Muon bundle reconstruction with IceCube: variables

Muon bundle reconstruction with IceCube: variables Relative energy loss in peaks (compared to average).

Not used in analysis.

Sam De Ridder (Ghent University)

HE muons: seasonal variations

Due to density change in atmosphere, change in muon multiplicity.

HE muons: seasonal variations

- Weight atm. T with μ prod depth $\rightarrow \tilde{T}_{\rm eff}$
- Find correlation with N_μ (sim) or dE/dX (data)

HE muons: seasonal variations

- Not understood energy dependence of correlation.
- Not understood hysteresis.
- Final result: 3% remaining variation (compared to 15% before), symm. around simulation (=smearing).

Analysis: Neural network

- Relation between inputs and outputs is unknown, non-linear mapping.
- Energy direct output, mass in energy bin reconstructed from template fitting.
- Reoptimization after obs. level. bug.

Energy bias and resolution

Composition: Blind challenges

Histogram= truth; Points= reconstructed

Composition: Blind challenges

Histogram= truth; Points= reconstructed

Results: Energy spectrum

Very nice agreement with the IT-alone spectrum.

Results: Composition

Results: Composition

Results: Individual energy spectra

Results: Individual energy spectra

QGSJET

Results: Individual energy spectra

in-ice light yield systematic: dark gray: -12.5%, light gray: +9.6%

In-ice light yield systematics

- DOM efficiency: \pm 3% (Jake and Tania)
- Photonics/PPC: Photonics bug.
 - Need hybrid MC, not available
 - ▶ Derive shift in absolute light yield (~ to Jake)
 - Use as corr. factor for DOM light yield in millipede
- Ice models:
 - 3 points on error elipse (+10% abs, +10% scat, -7.1% scat + abs)
 - Affects timing, z dependence and light yield
 - Need 3 new photonics tables (spline fitted)
 - This analysis dominated by light yield
 - Same method as above: compare shift with baseline PPC
- Hole Ice:
 - ▶ 30 cm, 100 cm
 - Same approach as above

In-ice light yield systematics

Very extensive work by Dennis Soldin astro.uni-wuppertal.de/~soldin/systematics.html

One example: Ice model systematics, 0°-30°

In-ice light yield systematics Summary:

 $0^{\circ}\text{--}30^{\circ}$ numbers:

	OfflinePulses (systematics/PPC)
Photonics	1.017
Hole ice 30 cm	1.045
Hole ice 100 cm	0.971
+ 10 % scattering	1.036
- 10 % scattering	0.882
-7 $\%$ scattering and absorption	1.070

In-ice light yield systematics

Correlations between Ice Model and DOM efficiency are negligible (\sim Jake). No correlations are implemented.

	Systematics uncertainty
DOM eff	± 3%
Hole ice 30 cm	+ 4.5%
Hole ice 100 cm	- 2.9%
+ 10 % scattering	+ 3.6 %
- 10 % scattering	-11.8 %
-7 % scattering and absorption	+ 7%
Total	+9.6%,-12.5%

Summary

- In-ice systematic dominates composition measurement
- Shift in light yield used to account for these systematics, but appropriate simulations are needed.
- Need for verifications of low-level data

Back-up

Back-up: correlations

Back-up: closed circle in-ice systematics

After correction: