Introduction to Atmospheric Muons in IceCube

Patrick Berghaus Muon Workshop, Madison 2015

All Muons

Low-Energy Bundles HE Muons

a muon, maybe two

200-310 muons

640-1,650 TeV

Propagation/Decay is handled by CORSIKA main code Hadronic Interaction Models provided by external modules (SIBYLL, EPOS, QGSJET...)

Muon Energy Losses in Matter (Ice)

Low-Energy Muons: Zenith Angle

Angular Distribution \rightarrow Muon Spectrum \rightarrow Nucleon Spectrum

Zenith Angle

Event sample is at all angles strongly dominated by light elements, especially protons! Reason: Threshold depends on **nucleon** energy E_{prim}/A

Zenith Angle: Trigger Level

For downgoing tracks, relative level of misreconstructed tracks is low. Analyses can be done without quality cuts! (Example: Anisotropy)

Nucleon Spectrum Derived from Zenith Angle

Inconsistency in CR nucleon spectrum measurement between Trigger and High-Q Level¹⁰

Total Charge

Total Charge

Can be used to "count muons" in CR showers

Total Charge

Total Charge: Systematics

20,000 Photo-Electron Events (CORSIKA)

20,000 Photo-Electron Events (CORSIKA)

True MC Parameters

Bi-Modal (Bundles/HE Muons)! HE Muons become rarer (spectrum)

Muon Energy Distribution in Bundles

(exact value depending on angle)

Bundle Spectrum

Bundles cover CR energy range from knee to ankle Lower energy limit due to Fe threshold

Example: Gaisser H3a

Leading Muons

Muons with energies of 20 TeV and above at the surface will be almost always be the leading particle.

Muon Stochastic Losses in IceCube

MMC Simulation Output Rigidity-Dependent poly-gonato

CORSIKA MC Reconstructed Values

1160 TeV Cascade 2900 m from Surface 56° from zenith

2490 TeV Muon (±0.2 in $\log_{10} \Rightarrow$ factor 1.6)

CORSIKA MC Reconstructed (True) Values

1160 (852) TeV Cascade 2900 m from Surface 56° from zenith

2490 (1850) TeV Muon ($\pm 0.2 \text{ in } \log_{10} \Rightarrow \text{ factor } 1.6$)

"Prompt": Decay without Re-Interaction

few π ,K decays

Prompt ≠ Charm

Muons can be produced in e-m decays of short-lived vector mesons SIBYLL 2.3RC (shown above): charm \simeq ERS charm \simeq unflavored New "BERSS" model (arxiv:1502.01076): charm \simeq ERS charm/2! **Muon Prompt Flux might be predominantly unflavored** 31

HE Muon Event Rate

Angular

Stochastic

IceCube Muon Energy Range

Stochastic

Stochastic

CR Energy Range of IceCube

"Global Fit" (Gaisser/Stanev/**Tilav**): Additional Population with Cutoff at 120 TeV/Z