Cascade reconstruction in KM3NeT (& Antares) Aart Heijboer, Nikhef

all plots are MC-only and "preliminary"

Motivation

- As detectors become larger →cascade/track ratio grows
- All cascades look the same (contrary to muons) \rightarrow potential to have very clean signal and 100% efficiency.
- Potential for *very* good energy resolution \rightarrow line searches
- Physics backgrounds (atm. nu) are low → can use in point source searches despite worse angular resolution.
- Step-up to nu-tau detection
- When we have a source, lot's of physics is the flavour ratios

Disclamer

This talk is about method high energy cascades that are currently used in KM3NeT.

Will not talk about:

- Very promising results for ORCA (J Hofestaedt talk this morning)
- Other algotihms that are under development in ANTARES.

three algorithms:

name	trajectory	vertex fit	direction fit
Algorithm 1 (Q-strat):	Antares \rightarrow KM3NeT	Х	
Algorithm 2 (Dusj) :	Antares \rightarrow KM3NeT	Х	X
Algorithm 3 (aashowerfit):	$KM3NeT \rightarrow Antares$	Х	X

1 & 2 have been used for phase 1.5 sensitivity studies

2 has been used in antares for latest diffuse flux search (previous talk)

3 is recent development with good prospects

Cascade signature in water

Cascade signature in water: intenstity

need to measure the light amplitude (ToT)

Light is beamed in the Cherenkov direction.

 Pattern remains at large distances from the shower.

-- energy independent!

- 1. Pre-hit selection
 - Minimal hit selection (triggered hits)
- 2. Vertex reconstruction prefit; mean light direction
 - Vertex prefit \rightarrow mean-space-time of hits
 - LightDirection \rightarrow average of the versor from the first hit to the following
- 3. Post-hit selection:
 - Coincident hits on DOMs && Largest hit among the coincidences && causal connection + residuals window wrt the prefitted vertex
- 4. Vertex reconstruction final fit:
 - M estimator with selected hits, using the prefit as starting point for minimization
- 5. Shower light direction; energy estimation:
 - ShowerLightDirection \rightarrow as LightDirection but wrt the fitted shower with sel. hits
 - Energy estimation \rightarrow Total ToT of sel. hits rescaled to the distance from the fitted vertex $_8$

Algorithm 1

1. Pre-hit selection

- 5. Shower light direction; energy estimation:
 - ShowerLightDirection \rightarrow as LightDirection but wrt the fitted shower with sel. hits
 - Energy estimation \rightarrow Total ToT of sel. hits rescaled to the distance from the fitted vertex $_9$

Algorithm 2 overview

- Used for mature Antares analysis
- Adapted to KM3NeT
- Likelihood Method
 - PDF from monte carlo
- Independent reco for
 - Vertex
 - Energy/Reconstruction

Algorithm 2: Direction and energy reconstruction

- PDF with 3 variables
 - shower energy
 - emission angle
 - 'vertex charge'

vertex charge: number of photons that should have been emitted from shower to produce observed ToT.

- cherenkov angle visible in PDF slice.
- saturation at high energies

Algorithms 1 & 2: position and direction reconstruction

after analysis cuts (BDT, energy) – see Luigi's talk

- distance to neutrino vertex (not the full story – see later)
- comparible resolutions for both

• Algorithm 2: around 4 degree resolution

Algorithms 1 & 2: energy reconstruction

-- good enough for cutting on, but

-- severely biased and increasing resolution \rightarrow can do better

13

Algorithms 1 & 2: energy reconstruction

same idea again:

- -- hit selection (resembles "bb-fit")
- vertex fit (m-estimator) using hit times
- direction reconstruction with likelihood for light intensity.
 - start at 12 different directions to increase chance to find global minimum

we are reinventing the wheel (and learning in the process).

15

position fit

- shower is extended (several m), but photons look very much like they are emitted from a single point at the same time.
- shower position and time fitted by M-estimate of the hit residuals

residual r = hit.t - | hit.pos - shower.pos | / v + shower.t

position fit: along the shower axis

– see increase of shower size with energy – resolution \sim 1 m

position fit: distance to the shower axis

– much better than 1 m

3D function (histogram) describing

- μ^{sig} = number of detected photons from a PeV shower as function of
- -r = |v|: distance shower to DOM - a : cos angle of impact with PMT axis - z : angle of DOM with shower axis

note: z depends on shower direction

note: μ^{sig} can be scaled easily to correspond to other shower energies

- in KM3NeT: number of photons (μ^{sig}) not measured directly on a *PMT* - we have ToT, but it needs thought/work/calibration

- but we do not even need it!

measuring the light intensity

With a single DOM, we can just count the photons

- at low intensity, $N_{hit} \sim N_{\gamma}$
- at high intensity, start to see light on oblique PMTs
- at very high intenstity, will start to see light at the back (via scattering)

 \rightarrow effectively have very large dynamic range.

measuring the light intensity

At high energies, all PMTs have a hit for r < 50 m. But there is *always* a region of r, a where there is a significant z-dependence \rightarrow direction sensitivity.

Containment cut applied for following results

detector = 115 string phase 1.5 building block (90 m string spacing)

Energy resolution

Direction resolution

Does it work in Antares?

direction resolution

Counting PDFs using only hit/nohit information

- -- does *not* work very well in Antares (not enough granularity)
- -- need to rely on per PMT charge measurment
- -- which we have!

In Antares: decent charge measurement between 1 and \sim 20 p.e.

 \rightarrow instead use 'normal' Poisson likelihood

$$\log \mathcal{L} = \sum_{i} \log \mathcal{P}(a_i | \mu_i)$$

ANTARES, Poisson likelihood

- Full detector (no dead OMs), contant 60 kHz background
- fresh results
- systematics & background rejection to be studied
- lot's of room for imrovement still

<u>conlusions</u>

- in water, shower reconstruction very naturally factorizes:
 - position + time of the shower ← hit times ns accuracy even at large distances
 - direction and energy of the shower ← light intensity cherenkov 'beaming' observed up to large distances
- Vertex fits all work well (M-estimators are good enough)
 shower max reconstructed within 1 m
- Direction + energy fit needs likelihoods..
 and results depend on best likelihood formulation and accurate implementation.
- multi-PMT design allows photon counting \rightarrow simple reconstruction by just using information on hit/empty PMTs.
- resolutions reached (contained events) direction: 4 – 1.5 degrees for 3 TeV – PeV energy : <10 % for E > 3 TeV [beter for more central events]
- Opens up exciting possibility to use showers even in point source searches. (will try it out in Antares)