

hadron and charm production in the atmosphere

introductory remarks from ISVHECRI 2014

Paolo Desiati

Wisconsin IceCube Particle Astrophysics Center & Department of Astronomy

University of Wisconsin - Madison

MANTS Meeting 2014 CERN - September 20, 2014

particle production in the atmosphere

Gaisser, Stanev, Tilav, 2013 - arXiv:1303.3565

Development of cosmic-ray air showers

particle production in the atmosphere

3

particle production in the atmosphere hadronic interactions

- CR showers dominated by soft component with small pT (non-perturbative QCD)
- hard component with high p_T with heavy quarks (pQCD)
- phenomenological descriptions of hadronic interactions with minijet production for hard component
- models to describe soft/hard interactions in forward region & extrapolated to high energy

• interaction models from accelerators, extrapolated to forward region at high energy

particle production in the atmosphere forward physics

2ndary particle

particle production in the atmosphere forward physics

particle production in the atmosphere forward physics

tuning hadronic interaction models

use energy spectra and multiplicities in forward region?

7

particle production in the atmosphere central region

8

particle production in the atmosphere central region

g

new *tuned* Pythia model to better describe multiplicity observations

(diffraction & saturation still needs work)

Paolo Desiati

particle production in the atmosphere central-forward region correlation

diffractive dissociation (forward) central-forward correlation is challenging large spread in model predictions particle production in the atmosphere forward region

hadronic interaction models for CRs don't describe **energy flow & multiplicity** in forward region

does this matter for cosmic rays & atmospheric neutrinos ?

Y.Itow, Forward production at LHC

LHCf single E_{γ} at 7TeV and 0.9 TeV pp

ISVHECRI2014@ 18Aug2014 PLB 703 (2011) 128-134

particle production in the atmosphere forward region

Y.Itow, Forward production at LHC Very forward neutron at 7TeV p-p

- η>10.76 : QGSJET03 good, >h>9.22 DPMJET3 good
- Larger neutron / gamma ratio than expected

no hadronic interaction model describes observations

23

particle production in the atmosphere p/ion-ion collisions

particle production in the atmosphere p/ion-ion collisions

- **soft component** of hadronic processes (non perturbative)
 - tuned collider & CR hadronic models not able to explain all observations
 - <u>extrapolation</u> to forward region is challenging
- forward region is important for cosmic rays & atmospheric neutrino predictions
- pp collisions important but p-ion (pPb, pO, pN, pC) necessary for CR
 - nuclear collective effects, saturation and shadowing

heavy quark production laboratory for perturbative QCD

- LHC data show agreement of observations within FONLL (wide range of η) - pQCD
- intrinsic charm production: asymmetry in $C\overline{C}$ baryon production (SELEX 2002)
- $p \rightarrow \Lambda_c^+ + \bar{D}^0$ of order 1% $(m_s/m_c)^2$ compared to associated production $p \rightarrow \Lambda K^+$
- inclusive D-meson spectrum dominated by intrinsic charm at high pseudo-rapidity & pT (Lykasov+ 2012; @LHC: Bednyakov+ 2013)
- non-perturbative QCD

heavy quark production benchmark for perturbative QCD

data slightly marginal but in agreement with pQCD

heavy quark production benchmark for perturbative QCD

at high energy increase of gluon distribution for x~0 non-linear QCD effects slows down cross section growth

are non-perturbative effects important ? intrinsic charm production experimental evidence ?

heavy quark production and astrophysics

- effect of charm production models
- effect of primary cosmic ray spectrum

Paolo Desiati

heavy quark production and astrophysics degeneracy prompt-astrophysical

observed starting all-direction all-flavor

- prompt neutrino contribution unknown but currently affecting astrophysical spectrum estimate (and viceversa)
- **probe** charm production with neutrino telescopes?
 - consistent multi-flavor & north-south (self-veto) neutrino detection
 - leading muons in muon bundles (complications from multiplicity)
 - muon bundle lateral distribution (composition sensitive)
- model (pQCD+intrinsic charm) and composition dependency

one final remark

- asymmetry between muon and neutrino @ high energy
- muons dominated by unflavored η mesons > PeV

atmospheric & charm session

Introductory remarks Paolo Desiati	20+5
Self-veto and charm production	with HE neutrinos in IceCube
Gary Binder	20+5
Atmospheric neutrinos and chan	m production
Chang Hyon	20+5
Charm with high energy muons H.P. Bretz	in IceCube Summary of P. Berghaus' results 20+5
Coffee 15:40-16:10	
ANTARES atmospheric/diffuse	searches (with emphasis on atmospheric background)
A Margiotta	25+5
IceCube MESE analyses (point	source and diffuse)
Albrecht Karle (Madison)	25+5
Remarks on Kshort production	in the atmosphere
Tom Gaisser	10+5
Review of charm production in	colliders (RHIC, ALICE, LHCb,)
Alessandro Grelli (Utrecht)	25+5
High energy hadronic interaction	n models bridging accelerator with cosmic ray physics
Anatoli Fedynitch (Karlsruhe)	25+5