Charm with High Energy Muons in IceCube

Summary of Patrick Berghaus' Results

Hans-Peter Bretz, Patrick Berghaus MANTS Meeting Geneva, September 20, 2014

Charmed Leptons in IceCube Neutrino Analyses

IceCube PRELIMINARY 6 2018Prompt normalization 516144 123 10Test statistic 8 $\mathbf{2}$ 6 806 1 $\mathbf{2}$ 0 2.02.63.01.82.22.42.8

Powerlaw index

Prompt Neutrinos background at higher energies

Best fit is zero charm component, upper limit of ~1.36 times prediction of Enberg model

Higher charm component would favor harder astrophysical spectrum

Muon Spectrum

Muon energy spectrum currently measured up to ~100 TeV

Dipole Model (Enberg et al.) model used as benchmark in IceCube

1-4: different calculations for prompt flux 5-6: conventional flux for different primary cosmic ray flux models around knee

Muons in IceCube

High Energy Muon

- Mostly from high energy protons
- Need to distinguish high energy muons from bundles for single
 muon spectrum

Muon Bundles

Accounts for majority of bright muon events

Muon Bundles in IceCube

High Energy Muons in IceCube

Energy loss peaks can be used to distinguish high energy muons from muon bundles

High Energy Muon Analysis - Structure

- Stochastic losses
- Energy reconstruction and muon bundle supression
- Prompt component and all sky spectrum

Stochastic Energy Losses of HE Muons

- Energy loss in single (leading) cascades
- Cascade energy proportional to muon energy

Data-Derived Differential Deposition Reconstruction (DDDDR)

Energy Reconstruction

Cascade energy proportional to muon energy in detector

Reconstructed vs true surface energy

Calculate surface energy from slant depth in detector

Muon Spectrum with Prompt

- > Muon flux consists of
 - Conventional muons (zenith dependent)
 - Isotropic prompt muons from charmed decays with γ_{prompt}=γ_{conv}+1
- Approximate prompt flux from conventional flux^[1]

 $\Phi_{\mu,prompt}(E_{\mu},\theta_{zen}) = \Phi_{\mu,conv}(E_{\mu},\theta_{zen}) \cdot \frac{E_{\mu}}{E_{1/2} \cdot \cos\theta_{zen}}$

- E_{1/2} energy where prompt equal to conventional flux
- X² fit to determine E_{1/2} for different primary cosmic ray models
- ^[1]Illana et al., arXiv:1010.5084

DES

Angular Distribution Fit

r hor,vert

$$r_{hor,vert} = \frac{N_{data,hor} / N_{MC,hor}}{N_{data,vert} / N_{MC,vert}}$$

- Angular distribution almost independent of primary cosmic ray flux
- Prompt isotropic, conventional zenith dependent
- Use ratio of horizontal to vertical flux

- Simulation only conventional
- Ratio of 1 means no prompt

Results of the Combined Fit

Model	Prompt (ERS)	p-value
GST-GF*	2.04	0.282
Poly-Gonato	7.49	0.149
H3a	8.32	0.075
ZS	7.82	0.014
IceCube PRELIMINARY		

- Best fit with prompt above neutrino analysis limits
- Some primary cosmic ray flux models favor high prompt contribution

^{VI} GST-GF* (Gaisser et al.) arXiv:1303.3565

Conclusion

- High energy muons can be distinguished from muon bundles by identifying stochastic energy losses
- Depending on primary cosmic ray model, prompt flux higher than in neutrino analyses is favored, zero prompt is disfavored, but..
- Detector systematics have to be studied further
- > Analysis soon to be done on additional four years of data
- Result not published yet due to systematic uncertainties

Similar study from water would be welcome!

Vertical Muon Rate for a km³ detector per year

Energy Estimators for Muons/Muon Bundles

MuEx, Millipede (detailed multidimensional likelihood reconstruction)

> DDDDR

- Data-Derived Differential Deposition Reconstruction
- Independent of ice model simulation
- Conservative energy estimator
- Derive light attenuation length in ice from fit to data

