ORCA – Configuration and Plans

J. Brunner

20/09/14

KM3NeT & ORCA

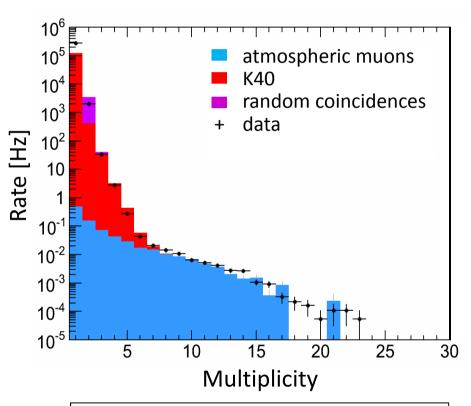
- 2 years ago
 - ORCA proposed for first phase of KM3NeT
- Now
 - ORCA is becoming an integral part of the KM3NeT physics program and planning
- Cost optimisation by
 - Phased construction
 - Complete share of technological solutions between Neutrino telescope and ORCA
 - Solutions based on published TDR of KM3NeT

Design – Optical Modules

Multi-PMT DOM

- 31 x 3" PMTs
- Photocathode area larger than ANTARES storey
- High Quantum Efficiency
- Photon counting & directionality
- Price per area lower than for large PMTs

ETEL D792


Hamamatsu R12199

HZC XP53B20

1st prototype ¶

✓ photon counting

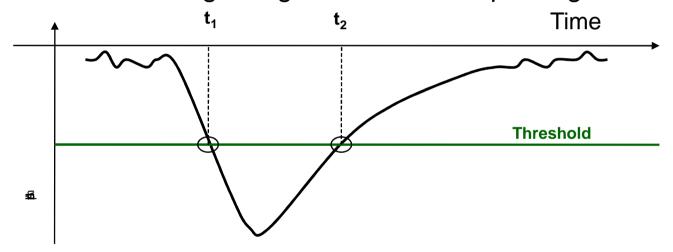
2nd prototype: Line with 3 mDOMs Currently operated at Capo Passero

[¶] http://arxiv.org/abs/1405.0839

Design – Detection Unit

Launcher vehicle

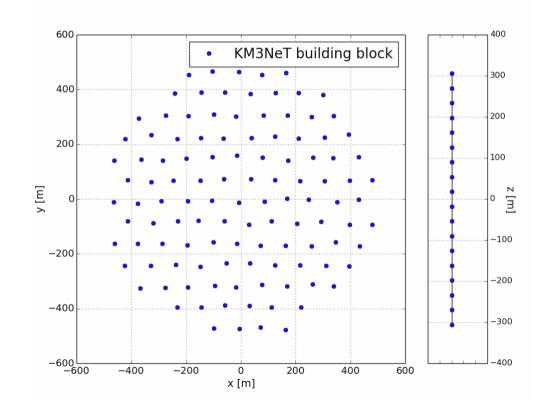
- rapid deployment
- autonomous unfurling
- recoverable


Each Detection Unit (Line) is composed of 18 DOMs
This number is defined by

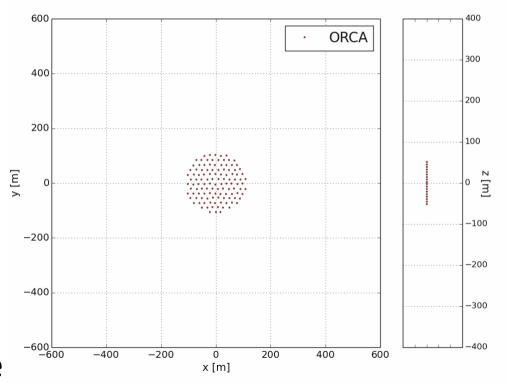
- DWDM system
- Launcher vehicle design

Designs – Electronics & DAQ

Time over threshold for various thresholds


From the analogue signal to time stamped digital data:

- Implemented through FPGA & System on chip contained in optical module
- All data to shore via ethernet link
- Time synchronisation and slow control


Design – Building Block

- 115 detection units (lines)
- High energy
 - 2070 DOMs
 - Footprint ~1km²
 - 600m high

Design – Building Block

- 115 detection units (lines)
- ORCA
 - 2070 DOMs
 - Footprint ~0.036 km²
 - 100m high
- Tunable parameters
 - Line distance
 - 20m (deployment)
 - DOM vertical distance
 - 6m, being optimised

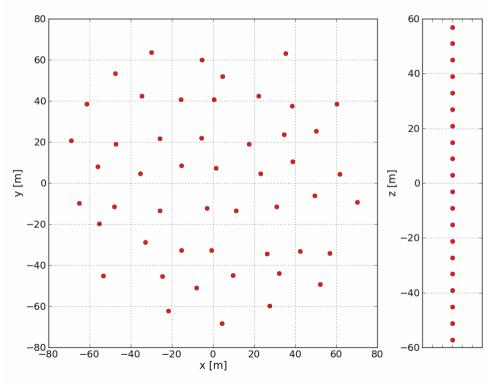
KM3NeT - Phased implementation

Phase	Total costs [M€]	Planned Installations	Status
1	31	Shore & deepsea infrastructures at two sites, 20-30 protoype lines	Funded
1.5	80–90	2 building blocks	Letter of Intent
2	220–250	Many building blocks	ESFRI road map

ORCA - Phased implementation

Phase	Total costs [M€]	Planned Installations	Status
а	Funds Phase 1	6-10 ORCA lines, proof of - Deployment of dense detector - Detection of low energy ν	Being discussed within KM3NeT
b	40	1 building block, parallel to HE Phase 1.5, funds permitting	Feasibility study
С	?	Beam from Protvino Extensions for CP-phase sensibility	Feasibility study

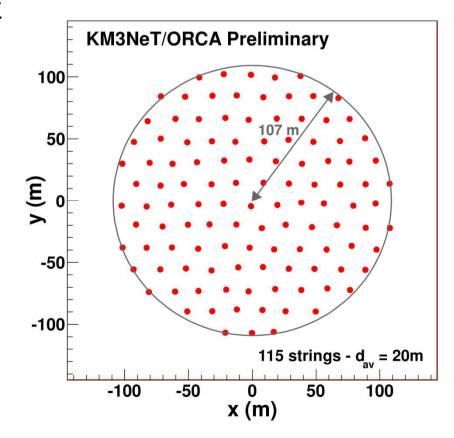
Multi-Site concept allows for parallel construction of ORCA & HE phase 1.5 detector, one candidate site for ORCA: Toulon


10

Simulations ~1 year ago

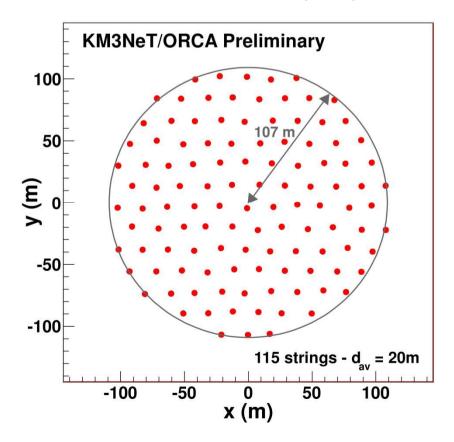
- Reference detector with
 - 50 lines
- Instrumented mass
 - 1.7 Mton
- Focus on track signature
- Several results obtained with this setup

 scaled to new reference
- Conservative as performance improves better than linear with size


Line distance : 20m DOM distance 6m

Simulations now

- Reference detector
 - 115 lines = building block
- Instrumented mass
 - 3.7 Mton
- Importance of cascade channel recognized
- Track & cascade considered on equal footing


Line distance: 20m DOM distance 6m

Geometry optimisation

- Reference detector
 - 115 lines = building block
- Consider larger vertical spacing by suppressing DOMs &scaling of instrumented volume
 →Jannik
- Dedicated simulation with 3x3x3 m³ grid for finer grained optimisation
 →Salvatore
- Ongoing activities, no firm conclusion yet

Line distance : 20m DOM distance 6,12,18m

Reconstruction

- Early focus: muon channel
 - Good results on angular resolution, E_{μ} and $M_{eff} \rightarrow Agata$
 - Pending: Neutrino energy resolution
- From 2014 on : cascade channel
 - Encouraging results on angular, energy resolution & M_{eff}
 → Jannik
- Recent progress
 - Atmospheric muon rejection → Luigi
- Near future
 - $-E_{v}$ and particle ID

Sensitivity & Systematics

- Development of coherent method to calculate sensitivity, including all effects and their correlations more difficult than originally thought
 → different approaches in PINGU & ORCA
- recent progress → Martijn & Lukas
- Systematic effects : ongoing activity
 - towards a list of generic nuisance parameters such as
 - Overall normalisation, shape corrections, offsets, asymmetries

Summary

- Phase 1 of KM3NeT might see few ORCA lines to
 - identify few GeV neutrinos
 - demonstrate deployment with dx = 20m
- Feasibility study: Demonstrate mass hierarchy sensitivity, benchmark: 3σ in 3 years
- So far no show stopper identified
- If both positive & supported by KM3NeT collaboration
 → obtain funding

ORCA with 1 building block
Parallel to KM3Net phase 1.5 detector