KM3NeT point-like sources

A. Trovato, INFN - LNS

MANTS 2014, 20th-21th September 2014

Detector Layout

KM3NeT building block

- ✓ 115 strings x blocks;
- ✓ average distance between strings: 90 m;
- ✓ number of OMs per string: 18;
- ✓ distance between OMs: 36 m;
- ✓ Volume of a single block: 0.5 km³.

KM3NeT phase 1.5 \rightarrow 2 building blocks KM3NeT phase 2 \rightarrow 6 building blocks

Part I

Analysis of specific sources (VelaX and RXJ1713.7-3946) simulated as neutrino emitting homogeneous disks

SNR RXJ1713.7-3946

Source simulated as a neutrino emitting homogeneous disk of 0.6° radius and a neutrino spectrum calculated following Kelner et al., PRD 74 (2006) 034018

$$\Phi(E) = 16.8 \times 10^{-15} \left[\frac{E}{TeV}\right]^{-1.72} e^{-\sqrt{\frac{E}{2.1TeV}}} GeV^{-1}s^{-1}cm^{-2}$$

Theta distributions

Background added

- Atmospheric muon and electron (anti-)neutrinos weighted with Honda+ Enberg + knee correction (PRD 89 (2014) 062007)
- Atmospheric muons generated with two thereshold 10 TeV (livetime 34 days) and 50 TeV (livetime 3 years)

θ v v events for 1 block and 1 observation year

Optimal cut θ <102° (preliminary cut-and-cout analysis)

A. Trovato, MANTS, 21th Sep 2014

Lambda and Nhit distributions (1° from the source)

Cumulative Λ distribution: $\Lambda \rightarrow$ goodness of fit criterion

Optimal cut $\Lambda >$ -6.2 (preliminary cut-and-cout analysis)

Cumulative N_{hit} distribution: $N_{hit} \rightarrow$ rough energy estimate

Energy distributions (1° from the source)

After the cut on θ

After the cut on Λ

Unbinned method

Number (n) of expected background events in the detector for a chosen time window calculated with the cuts fixed from the binned analysis
Probability density function for signal (P_{sig}) and background (P_{bg}) events estimated from the MC as a function of the distance from the source α
50000 background samples with n events created and for each sample the

maximum value of likelihood ratio LR found (n_{sig} is a free parameter):

hypothesis of signal+background

$$LR = \log\left[\frac{P(data \mid H_{bkg+sig})}{P(data \mid H_{bkg})}\right] = \sum_{i=1}^{n} \log\frac{\frac{n_{sig}}{n} \times P_{sig}(\alpha_i, Nhit_i) + \left(1 - \frac{n_{sig}}{n}\right) \times P_{bkg}(\alpha_i, Nhit_i)}{P_{bkg}(\alpha_i, Nhit_i)}$$

hypothesis of background only

 $P(\alpha, Nhit) = P(\alpha) * P(Nhit)$

- LR evaluated for samples containing only bkg events and for samples with signal events added to the bkg events
- LR used as a test statistic

Unbinned method for the SNR RXJ1713.7-3946

Unbinned method for the SNR RXJ1713.7-3946

Nfakes = 1 3σ 5σ Nfakes = 2 10 Nfakes = 3 Nfakes = 4 Nfakes = 5 10⁻² Nfakes = 6 Nfakes = 7 10⁻³ Nfakes = 8 Nfakes = 9 Nfakes = 10 10-4 10-5 ⁸⁰LR_⁹⁰max 10 20 30 40 50 60 70

Critical values <u>LR30</u> <u>LR50</u> extracted from the analysis of sample with only background events

The LR_max distributions for each number of "Nfake" signal events added to the background sample are integrated for LR_max>LR3s and LR_max>LR5s obtaining the discovery probability

Vela X

Neutrino spectrum calculated following Vissani at al. prescription[1] assuming a 100% hadronic emission and a transparent source

 $d\Phi_v/dE_v = N * (E_v/1TeV)^{-\Gamma}exp(-E_v/E_{cut})$

- N = 0.72 $10^{-14} \,\text{GeV}^{-1}\text{s}^{-1}\text{cm}^{-2}$
- Γ= 1.36
- E_{cut}= 7 TeV

Source simulated as a neutrino emitting homogeneous disk of 0.8° radius F.L. Villante and F. Vissani, PRD 78 (2008) 103007; F. Vissani and F.L. Villante, NIM A588 (2008) 123; F. Vissani, Astr. Phys. 26 (2006) 310

10⁴

 10^{3}

10⁻¹⁰

10⁻¹

10⁵

E (GeV)

Vela X and RXJ1713.7-3946 disc. years

RXJ1713.7 sensitivity

- Sensitivity as a function of the number of observation years
- Sensitivity calculated using the Feldman-Cousins approach and the binned (cut-and-count) method

Part II Analysis of generic point sources with E⁻² spectrum

Discovery for point source E^{-2} spectrum as a function of δ

Discovery potential as a function of the declination:

point-source with E⁻² spectrum

Discovery vs observation years

Discovery potential as a function of the observation years:

- point-source with E⁻² spectrum
- for reference the Vtime is plotted

Sensitivity for point source E^{-2} spectrum as a function of δ

10-10

10-11 ш

> 10-12 -1.0

-0.5

0.0

 $sin(\delta)$

0.5

Caveat: the KM3NeT sensitivity is calculated with the Feldman-Cousins approach and the binned (cutand-count) method ... room for improvement

A. Trovato, MANTS, 21th Sep 2014

1.0

To do list

Other potential sources and stack analysis
Add the source morphology study (at the moment flat extension)
Sensitivity with the unbinned method

BACKUP SLIDES