Diffuse flux sensitivity studies for KM3NeT

Luigi Antonio Fusco University of Bologna and INFN – Sezione di Bologna

MANTS-GNN Collaboration, CERN, 20-21 September 2014

Outline

- Estimation of KM3NeT Phase1.5 capabilities to <u>detect</u> 'the' IceCube flux
 - Muon channel
 - Cascade events
- <u>Tracks</u>
 - Max-likelihood method:
 - Angular selection and quality cuts applied to improve signal/backgroung ratio and likelihood maximization.
- <u>Showers</u>
 - Cut-and-count procedure:
 - Sequence of 4 cuts to reduce the atmospheric background (both ν and $\mu)$ and MRF minimization.

KM3NetT Phase1.5

 \rightarrow 2 building blocks, for a total volume of ~1km³

Signal and background definition

- Atmospheric (background) neutrino flux
 - Honda (conventional) with knee correction + Enberg (prompt)
 - Taken from the *neutrinoflux* package
- Atmospheric (background) muon bundles
 - Parametrized flux from mupage
- Isotropic diffuse cosmic flux
 - IceCube signal*
 - v_e and v_{μ} directly from the simulations
 - v_{τ} contribution estimated from other flavours

BKG

SIGNAL

*Here 1.2 10⁻⁸ usual units; per flavour, with cutoff at 3 PeV

Tracks: max-likelihood method

- Rejection of atmospheric muons:
 - Angular selection up to 10° above the horizon
 - Cut on the reconstruction quality parameter ($\Lambda > -5.8$, $\beta < 1.2^{\circ}$)
- Unbinned max. likelihood method* to evaluate the significance.

$$LR = \sum_{i=1}^{n} \log \frac{\frac{n_{sign}}{n} \times P_{sig}(E_i^{\mu_{rec}}) + \left(1 - \frac{n_{sign}}{n}\right) \times P_{back}(E_i^{\mu_{rec}})}{P_{back}(E_i^{\mu_{rec}})}$$

- No separate fit for conventional and prompt
- Background normalization allowed to vary in the likelihood fit

Tracks: max-likelihood method

• Max likelihood method to evaluate the significance.

Tracks: max-likelihood method

Cascades: cut-and-count

1. First level cut – Nhit2k

- Events below 2000 PMT pulses are dominated by background
- Dusj and Q-strategy* ~100% efficient on showers (above 10TeV)
 - Use both reconstruction informations
- 2. Geometrical cut
 - Q-strategy shower vertex containment
- 3. <u>ToT cut</u>
 - Total Time over Threshold of hits selected to be causally connected with the reconstructed shower vertex
- 4. <u>Boosted Decision Tree</u> for background suppression
 - Multivariate algorithm using both Dusj and Q information content
 - Simultaneous 2D-MRF minimization with ρ for the final selection

*Aart's talk yesterday,

algorithm 2 and 1

respectively

Cut-and-count procedure: containment

 Different distribution of the (pseudo)vertex for neutrinos and atmospheric muons.

selected V_{instr} ~ 0.4 Gton

8

Cut-and-count procedure: ToT

- Total Time over Threshold of hits causally connected with a cascade event at the reconstructed vertex from Q-strategy
- Cuts on both event energy and topology

Cut at **15 10³ ns**, corresponding to ~20TeV.

Strong suppression of low energy μ bundles and atmospheric neutrino tracks

Cut-and-count procedure: BDT

 Multivariate algorithm, using both Q-strategy and Dusj quality parameters

Sensitivity estimation

Sensitivity estimation

Cascades: independent analysis (D.Stransky)

Cascades: independent analysis (D.Stransky)

Cutting away muons in 2 steps

2 – 2D distribution of a dusj strategy shower-id parameters and direction

Sensitivity estimation

	Flavour	Signal	Bkg
Per year per block	ν _e	3.2	0.8
	ν_{μ}	0.6	0.8
	ν_{τ}	2.5	-
	total v	6.3	1.6
	atm µ	-	~0

Completely analogous results to the first cut-and-count procedure

90% Sens.	1.35 10 ⁻⁸
3σ Disc 50%	2.4 10 ⁻⁸
5σ Disc 50%	4.1 10 ⁻⁸

Diffuse fluxes – maximum likelihood

• Same as for track analysis, improvement expected (and first application is encouraging)

Diffuse fluxes – maximum likelihood

17

Conclusions and outlook

- Sensitivity studies in both the muon and the cascade channel
 - Good atmospheric muon background rejection feasible
 - Good performances for KM3NeT Phase 1.5 in the detection of 'the' IceCube signal:
 - Studying it (composition, fitting spectral shape, etc.) still to be done.
 - Also studied the 120 m behavior (see backup)
- Improvements to come soon
 - Optimized maximum likelihood calculation also for cascades (first insight showing ~20% improvements)
 - More advanced ToT and trigger simulations to be applied in the simulation chain
 - Improved shower reconstruction to be applied
 - Systematic studies

Backup

Cut-and-count procedure: efficiency on the signal

Cut-and-count procedure: efficiency on the neutrino background

Cut-and-count procedure: efficiency on the atmospheric muons background

Resulting effective area for cascade analysis

Boosted decision tree inputs

- From Q-strategy:
 - Vertex position;
 - Reconstructed θ;
 - M estimator;
 - R estimator;
 - Inertia ratio;
 - Aph parameter:
 - Correlated with the highest pulse position;
 - Distance parameter:
 - Correlated with the highest pulse position;

In blue, discriminating variable developed specifically for KM3NeT

- From dusj
 - Vertex position;
 - Reconstructed θ;
 - Vertex distance;
 - FinalFitLogLikelihood:
 - and reduced value;
 - VertexFitLogLikelihood:
 - and reduced value;
 - Inertia;
 - Gold parameter;
 - Y intersect;
 - Residuals FWHM.

120 m spacing – diffuse cascades

- Tested an "expanded" block, with 120 m spacing between the strings
 - Same cut-and-count steps, different selection cuts
- Improvements in the FOM for diffuse searches...

