Cascade reconstruction and angular resolution

in GVD

Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration
Geneva, September 20, 2014

Gigaton Volume Detector (Lake Baikal)

	GVD	4^{*} GVD
OMs	2302	10368
Clusters (8 Strings)	12	27
Sections (12 OMs)	$2 /$ Str.	$4 /$ Str.
Depths, m	$950-1300$	$600-1300$
Instr. volume	$0.4 \mathrm{~km}^{3}$	$1.5 \mathrm{~km}^{3}$

GVD array
$1^{\text {st }}$ GVD cluster: $\mathbf{8}$ strings

- Installed strings and cable stations

Optical module

First Cluster-2015:

First cluster „DUBNA"

- 192 OMs at 8 Strings

Layout - 2014

- 2 Sections per String
- 12 OMs per Section
- DAQ-Center
- Cable to Shore
- Acoustic Positioning System
- Instrumentation String with detector calibration and environment monitoring equipment

- Active depth 950-1300 m

Optical module (OM)

Glass pressure-resistant sphere VITROVEX (17") OM electronics: amplifier, HV DC-DC, controller 2 on-board LED flashers: $1 \ldots 10^{8}$ pe., $430 \mathrm{~nm}, 5 \mathrm{~ns}$ Mu-metal cage
PMT R7081HQE : $D=10 ", \sim 0.35 \mathrm{QE}$
Elastic gel

Quantum efficiency

Angular sensitivity

\checkmark Cascades from $v_{\mathrm{e}, \tau} \& \mathrm{v}_{\mu}(\mathrm{NC})$:

- Point-like, strongly anisotropic light-source - size proportional ${ }^{\frac{\text { dab }}{2}}$ to $\ln E_{v}$ (but LPM-effect for >20PeV!)
- Light intensity proportional to $\mathrm{E}_{\mathrm{v}} \cdot 10^{8} \mathrm{\gamma} / \mathrm{TeV}$

- Detection efficiency strongly depend on environment properties (water/ice).

- Environment properties (Baikal)

\checkmark Light absorption: $\mathrm{L}_{\text {abs }} \sim 20-25 \mathrm{~m}$
\checkmark Light scattering: $\mathrm{L}_{\mathrm{s}} \sim 30-50 \mathrm{~m}$
\checkmark Dispersion of light velocity nigligible
\checkmark Light background: $15-40 \mathrm{kHz}$
\checkmark Scattering function: $<\cos \theta>\sim 0.88$

Water (Baikal): Light Scattering - 30-50m

Antarctic Ice: Light Scattering - 1-4 m

Background

- Cascades from atm, muons
- Atm. electron neutrinos $\left(\sim E_{v}{ }^{-3.7}\right)\left(v_{\mathrm{e}} / \nu_{\mu} \sim 1 / 20\right)$

History of

 Cascade detection in BaikalNT200: 8 strings (192 OMs)
Height $\times \varnothing=70 \mathrm{~m} \times 40 \mathrm{~m}$,
$V_{\text {inst }}=10^{5} \mathrm{~m}^{3}$
Effective area: $\mathbf{1} \mathbf{T e V} \sim \mathbf{2 0 0 0 m}^{2}$
Eff. shower volume:
100 TeV ~ 1.0 Mton
NEUTRINO TELESCOPE NT-200

- Search for High-Energy Cascades With NT200

Cascades produced below NT200:

- Arrival times were used for vertex reconstruction:

$$
\Delta \mathrm{r} / \mathrm{r} \sim 7 \%
$$

- PMT amplitudes were used for energy and derection reconstruction:

$$
\delta \lg E \sim 20 \%, \psi_{\text {med }} \sim 4.5^{\circ}
$$

Results of laser light source position and intensity reconstruction prove an efficiancy of used methods.

1038 days (April 1998 - February 2003

Zenith angle distribution

Energy spectrum

Extra cuts for v events separation:
Esh > $130 \mathrm{TeV}(40<\theta<180) \&$ Esh $>10 \mathrm{TeV}(\theta>90)$

Generation procedure:

$>$ Cascade vertex $\mathrm{r}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ within $\sim 0.3 \mathrm{~km}^{3}$ volume and direction Ω
$>$ Neutrino $\left(v_{e}, v_{\mu}, v_{\tau}\right)$:

- Energy selection - uniform logE distribution
- passing through Earth to vertex point (CC, NC) - survival probability (due to CC), final energy (due to NC)
- Interaction in r and cascade energy $E_{\text {sh }}$ generation
> Light propagation in water and OM-response
- OM-response table $n(\mu, \psi, t, \rho, r)$ on point-like cascade
- Integration along cascade length

Reconstruction technique

Reconstruction of cascade position
$\chi_{t}^{2}=\frac{1}{\left(N_{h i t}-4\right)} \sum_{i=1}^{N_{h i t}} \frac{\left(T_{i}\left(\vec{r}_{s h}, t_{0}\right)-t_{i}\right)^{2}}{\sigma_{t i}^{2}}$,
where $T_{i}\left(\vec{r}_{\text {sh }}, t_{0}\right)$ time of flight of unscattered photons

Reconstruction of cascade direction and energy
$L_{A}=-\sum_{j=1}^{N_{h i t}} \ln P_{i}\left(A_{i}, E_{s h}, \vec{\Omega}_{s h}(\theta, \varphi)\right)$,
where P_{i} calculates in respect of tabulated $\bar{n}_{p e}(\rho, z, \theta, \varphi, \tau)$

Reconstruction of a cascade vertex in GVD-Cluster

Iterative procedureOMs with residual

 $\delta t>15 \mathrm{~ns}$ are excluded and final $\mathbf{N}_{\text {hit }}$ is obtained for for following analysis
$\mathbf{r}_{\text {gen }}$ - generated

 $\mathbf{r}_{\text {rec }}$ - reconstructed$$
\begin{aligned}
& \delta r=\left|r_{\text {rec }}-r_{\text {gen }}\right| \sim 2 m \\
& \delta r / r=\left|r_{\text {rec }}-r_{\text {gen }}\right| \sim 0.01
\end{aligned}
$$

Reconstruction of a cascade energy in GVD-Cluster

Generated and reconstructed energy distributions of cascades from electron neutrino flux $\sim E^{-2}$

ठE/E ~ 30\%

Directional Resolution for Showers

Cascade angular resolution $\sim 4^{\circ}$

Selection criteria based on hit multiplicity

Cascade energy distributions
Flux ~E-2:
$\mathrm{F}\left(\mathrm{N}_{\text {hit }}>20\right) / \mathrm{F}(>10)=0.51$
Flux ~E -2.3:
$\mathrm{F}\left(\mathrm{N}_{\text {hit }}>20\right) / \mathrm{F}(>10)=0.36$
Flux ~E -3.7:
$\mathrm{F}\left(\mathrm{N}_{\text {hit }}>20\right) / \mathrm{F}(>10)=0.06$

GVD-Cluster:

Neutrino Effective Area

Events per Year from IC-flux ($E^{2} \mathrm{~F}_{\mathrm{IC}}=3.6 \cdot 10^{-8} \mathrm{GeV} \mathrm{cm}{ }^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$)
~1 Event/Year (>100 TeV)

Atmospheric muons MC-sample corresponding to 341 life days

Conclusion

- First GVD-Cluster will be deployed in 2015
- It will have $\sim 30 \%$ energy resolution and $\sim 4^{\circ}$ angular resolution
- About 1 IC astrophysical neutrino event is expected in 1 year data sample

Neutrino Effective Area

IceCube

GVD-Cluster

Events per Year from IC-flux ($\mathrm{E}^{2} \mathrm{~F}_{\mathrm{IC}}=3.6 \cdot 10^{-8} \mathrm{GeV} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$)

~ 1 Event/Year ($>100 \mathrm{TeV}$)

