

Atmospheric Neutrino : IceCube 86 (2011) Cascades Analysis

Chang Hyon Ha (LBNL) MANTS Meeting at Geneva September 20, 2014

Analysis Overview

- Selection of IC86-1 (2011) Cascade sample.
- Maximum likelihood fit to measure the atmospheric neutrino induced cascades by using energy, zenith, and particle identification variables.
- Using the fit results, extract cascade spectrum and NuE spectrum.

- High Energy Vertical Atm. Neutrinos accompany with Atm. Muons
- Any veto analysis unconsciously rejects these events

Atmospheric SelfVeto

Atmospheric Neutrino Predictions

The Cascade channel is advantageous. Conventional Neutrinos : NuMu flux is higher than NuE flux (Initial flux ~10 :1 at around 1 TeV) Charm Neutrinos : NuE flux is higher than NuMu flux (Initial flux 1:1)

A few Cascade Variables

Data/MC Agreement & Good Discrimination

Final Analysis Cut (Cascade BDT Selection)

Cascade Reconstruction Resolutions

- At 10 TeV, 9% Energy Resolution & 8 deg.
 Zenith Resolution (shown statistical only)
- Systematics :: Ice Parameters (scattering& absorption), Ice Anisotropy, and DOM efficiency add 12% in Energy Resolution and 2 deg. in Zenith Resolution.

3-D Likelihood Fitter

Systematics

Fit Component Signature

Observed Events : 1078 in 332.3 days

Fit Params	E-2.39 Best Fit (Events)	Energy	PID	Zenith
Cosmic-Ray Muon	148+/-25	Low	Muon-like	Down
Conventional NuMu (Honda)	0.86+0.2-0.14 (596)	Medium	Muon-like (NC cascade-like,50%)	Broad peak Horizon
Conventional NuE (Honda)	1.36+0.4-0.32 (230)	Medium	Cascade-like	Sharp peak Horizon
Prompt (ERS)	<1.63 (0)	High	Cascade-like	Up
E-2.39 Astrophysical	3.31+1.6-0.8 (102)	Very High	Cascade-like (nue,nutau 80%)	Flat
Best Fit MC	1076			

Each component has a unique signature.

Unblinded Data

- **I078 Events** observed (90% [0.3 14] TeV)
 - 70 Events above 10 TeV
- Very good data/MC agreement
- Good purity of the sample in cascade analysis : 15% CR Muon contamination estimated from data
- Good Particle Identification between cascade and starting tracks (NuMu-CC events) achieved.

Conventional Neutrinos I-Projection of Best Fit

Conventional Neutrinos

- High Energy conventional NuE (230 events) measured.
- Conventional components have little impact on astrophysical component or charm component
- Strong impact comes from systematics (DOM eff. & Ice Scattering)
- Best fit favors higher NuE compared to Honda

Conventional NuE Spectrum

Improved result at higher energies (Cascade Filter & 3D-LLH Fit)

Summary

- We have conducted atmospheric neutrino-induced cascade analysis with 1 year of IC86 data.
- 1078 events with energy range extend to 300 GeV and constrain conventional neutrino spectrum.
- Conventional Components (NuMu, NuE) are less dependent of Prompt and Astrophysical components.
- Conventional NuE flux is measured at 1.36^{+0.40}-0.32 × (Honda+H3a) and the unfolded spectrum is presented

Backup

K short to NuE

