Calibration strategy in ice

Martin Jurkovič for the IceCube/PINGU collaboration

Physik Department ECP, Technische Universität München

MANTS-GNN Meeting 2014, September 20, 2014

CERN, Geneva, Switzerland

Excellence Cluster Universe

Outline

Antarctic ice is a special detector medium

IceCube calibration program: current status and achievements

Measurements in the laboratory

Calibration plans for the future (PINGU)

Calibration of a detector deployed in natural ice

IceCube and its in-ice extensions is a grid of optical sensors in **natural Antarctic ice**

After deployment \rightarrow no access to the deployed hardware

Detector calibration is an iterative process

Variety of tools for calibration

- Natural sources of Cherenkov light
- Artificial in-situ light sources and tools

Calibration is an iterative process

Geometry calibration

During deployment

- Survey data
- Pressure sensors
- Laser ranger for vertical DOM to DOM distance
- After deployment use flashers to triangulate final DOM position and measure DOM orientation

Systematic uncertainties affect resolution and absolute energy scale

Bulk ice optical properties (scattering & absorption)

Hole ice

DOM efficiency & angular response

- 10 - 15 %

Current tools for calibration:

- Minimum ionizing muons
- LED flashers (each DOM)
- Hole ice camera on a string
- Dust logger and laser

Calibration in the future and open questions (PINGU case)

Goal: to connect PINGU calibration precision to physics reconstruction precision

- How precise do we need to be to achieve physics goals?
- Can we demonstrate that precision in PINGU?
- Can we calibrate to that level?

Energy scale and resolution + angular resolution + geometry

 Main instrumental effects are DOM response and ice properties both local (hole) and global (bulk)

Studies in progress for updated PINGU LoI

Multiple cross-checks on energy scale at the few % level

Measurement of DOM sensitivity in laboratory (< 3%)

• Simulate photon interaction and photon transport

Calibration light sources measurement in laboratory (< 3%)

- Check in ice reconstruction for scale error
 - LED flashers
 - Precise diffuse light sources (POCAM)

Stopping low energy muons

- Response as a function of distance from track
- New exploratory investigation: Michel electrons

Example: evolution of bulk ice model error using LED flasher data

Model error \rightarrow difference between received charge per DOM in simulation and data

IceCube ice models:

Strategy for addressing uncertainties in ice and DOM sensitivity

Use known sources of model error as a guide

- Reconstruct SPICE Lea simulation with SPICE Mie tables
 - Model error due to anisotropy, a proxy for unsimulated effects in the bulk ice

Reconstruct simulation with smeared individual DOM efficiencies

 Model error due to scatter in individual DOM efficiency is a proxy for unsimulated individual DOM effects based on the relative DOM efficiencies fits

Strategy for addressing uncertainties in ice and DOM sensitivity \rightarrow hole ice

Quantitative strategies for hole ice measurements

- Light from flasher received below/above flasher
- Δt distribution of direct hits from muons (sensitive to scattering function)

Qualitative strategy

Camera measurement

It is great to have eyes in the ice: camera system on each DOM (present and future)

See local variations in light propagation (becoming important)

Environment of each DOM can be significantly different

Camera can help answer questions:

- DOM orientation & position with respect to the hole ice?
- Are there any impurities, cracks, bubbles, ...
- Where is the cable located ?
- Quantify DOM-DOM variation
- Dust deposition on DOM surface

New DOM calibration facility at UW Madison to measure DOM optical sensitivity

Multi-wavelength light monitored by 3 photodiodes

Targeted precision: < few %

POCAM - Precision Optical CAlibration Module (1 per string)

Multiport integrating sphere (in existing IC pressure sphere) uniformly illuminating large detector volume at precision of 1-2%

Whole interior covered with a diffuse white reflective coating

• barium sulfate, teflon, tyvek, ...

Light source – intense & fast multi-wavelength LEDs

Light detector – photodiode (small area \rightarrow high speed)

− SiPM (reduced after-pulsing & crosstalk → expensive)

Electronics for self-monitoring # photons / pulse / port, pulse time, pulse shape, ...

Can we make use of Michel electrons in ice?

Study detector response to low energy charged leptons

• DOM by DOM hole ice variation

Muon background simulation: 2 interesting events / 0.5 h

But... It's definitely challenging

Only Michel electrons with vertex very close to a DOM produce signals with large amplitude

Exploratory study

Only Michel electrons with vertex very close to a DOM produce signals with large amplitude

Conclusions

Huge progress

Calibration of IceCube detector is an ongoing iterative process

Calibration in IceCube is an interplay of a variety of tools (LED flashers, LE muons, in ice camera,...)

New calibration devices / techniques are considered for IceCube future extensions (per DOM camera, POCAM, Michel electrons...)

Work ongoing...

Ice scattering anisotropy in SPICE Lea

