Design and studies of a new optical module for IceCube high energy extension

Shigeru Yoshida (<u>syoshida@hepburn.s.chiba-u.jp</u>) Aya Ishihara (<u>aya@hepburn.s.chiba-u.jp</u>) <u>Chiba University (Japan)</u>

presented by Romain Gaior

Introduction

C. Haak IC collab. metting Geneva

High energy extension

- -Volume ~ I0x IceCube
- Geometry not yet defined
- Larger spacing

- ~6000 modules→cost effective
- Larger spacing \rightarrow need better photon collection
- drilling cost
- Pressure resistance
- Temperature

Example of HEX geomettry

From IC DOM to New DOM

IceCube DOM

- 10 inches PMT
- Spherical glass housing ~5-10% at 350nm
- Good QE at ~400nm

From IC DOM to NewDOM

- 2 PMTs back to back: up/down symmetry for veto, reconstruction
 - 2 PMTs instead of 1: better saturation response

- Ellipsoidal glass shape: customed for PMT curvature and smaller diameter

- Simple design: close to IceCube design

Photon Detector

- Two 8' Hamamatsu R5912 High-QE
 - Close relations with Hamamatsu
- Considering also an Hybrid Photon Detector (already ordered to test)

Glass design

customized glass shape/curvature

- designed best match curvature to our PMT
- less thickness top/bottom part (9mm-10mm where PMT acceptance) for better light transmittance

Slightly enhanced diameter and glass thickness in the middle for a mechanical strength

Good strength to compressive stress Good buckling strength

	/ - 8-14255	
	要素(816)3 2/13 見心主は古	
	約1.2 取り生ルシン 単位 MPa	
1	014/07/22, 19:17:18	
	-148.2 最大	
	-190.4	
	1004	
-		
	-2749	
	-317.1	
	-359.4 最小	
	External pressure 30MPa	
_	buckling strength 43MP	a
_		
The maximum compressive stress 360MPa		
_		
1	₩	
		Jinnon Marina Enterprises, 114
_		vippon marine Enterprises, Ltd.

- Matched curvature glass/PM

- Optimized glass thickness for transmittance/resistance

- Total diameter 284mm

- Pressure simulation OK for ~350bar

Glass Transmittance

Gel Transmittance

OKAMOTO GLASS

New gel: Shinsetsu Silicone Easy to treat and shape Transmittance improved at all λ Larger improvement at small λ (< 300nm) → still needs test at low temp

First tests and measurements (a few pics)

All credits Hans Niederhausen (Stony Brooks Uni.)

First tests with spherical glass for practical reason

Hamamatsu 8' PMT

Design

Absolute Calibration using a calibrated PMT as ref. First measure the gain and charge response then QE Use a set of 5 LED as source Test with/without glass Stony Brook 'st tests and measurements (results

All creats mans Niederhausen (Stony Brooks Uni.)

JNIVERSITY

PMT QE improvement confirmed at low λ ~6% reduction for coated glass

Future test and time scale

Next months

Next year

- keep adding elements
 to the setup: PMT + glass + gel
- Freezing temperature test
- Still in spherical housing

- Jan./Feb: elliptical glass
- Test in larger freezer
- High pressure test
- (with high pressure water facility)

+ DOM simulation development (GEANT 4)

Summary

New DOM design: Double PMT optical module in elliptical

glass housing

<u>Design</u>

- 2 HQ 8' PMT back to back
- Elliptical glass with optimized thickness (simulated)

<u>Material</u>

- Glass housing: improvement

around 300-400nm

- **Coating**: 2-4% improvement
- Gel: improvement all λ

Conclusion:

Overall gain especially at low λ Confirmed by first test High pressure test + freezing temp. foreseen next year