

summary of charm production session

MANTS meeting 2014

Paolo Desiati

Wisconsin IceCube Particle Astrophysics Center & Department of Astronomy

University of Wisconsin - Madison

MANTS Meeting 2014 CERN - September 21, 2014

atmospheric neutrinos

- determination of v_e spectrum via cascades
- + v_{μ} / v_{e} ~ 10 @ 1 TeV
- onset of prompt contribution from charm at lower energy

- charm production between conventional & astrophysical components
- is charm contribution **important** ?
- how much do we know about it ?
- is it possible to **measure** it ?

Disentangling Charm and
Astrophysical Neutrino Fluxes in
IceCubePrimary author: Jakob van Santen, University of Wisconsin, MadisonGary Binder, Lawrence Berkeley National LaboratoryMANTS, 20 September 2014

Disentangling Charm and

IceCube

Astrophysical Neutrino Fluxes in

Primary author: Jakob van Santen, University of Wisconsin, Madison

Paolo Desiati

- 283 cascades + 105 tracks in 2 years
- best fit NO charm contribution
- soft astrophysical spectrum

Disentangling Charm and Astrophysical Neutrino Fluxes in IceCube

Primary author: Jakob van Santen, University of Wisconsin, Madison

Gary Binder, Lawrence Berkeley National Laboratory

MANTS, 20 September 2014

- all sky 90% CL charm limit ~ 1.4 ERS
- separate hemisphere 90% CL charm limit ~ 3.6 ERS

Disentangling Charm and

IceCube

Astrophysical Neutrino Fluxes in

Primary author: Jakob van Santen, University of Wisconsin, Madison

determine prompt component with muons ?

2.1

2

2.2

2.3

2.4

2.6

2.5

Astrophysical Index (y)

- large muon bundles of low energy muons
- high energy muons (leading muons, low multiplicity)
- stochastic energy losses to separate them

Model	Prompt (ERS)	p-value		
GST-GF*	2.04	0.282		
Poly-Gonato	7.49	0.149		
H3a	8.32	0.075		
ZS	7.82	0.014		
IceCube PRELIMINARY				

- Best fit with prompt above neutrino analysis limits
- Some primary cosmic ray flux models favor high prompt contribution

 $E_{\mu}[GeV]$ GST-GF* (Gaisser et al.) arXiv:1303.3565

distance along track

14

atmospheric neutrinos and diffuse fluxes

- determination of atmospheric v_{μ} spectrum
- 2 independent energy estimators & unfolding techniques

Bartol normalization + prompt contributions

----- A. Martin et al. - 2003

----- R. Engberg et al. - 2008

Barr et al. – 2004

Adrian-Martinez et al. Eur. Phys. J. C 73, 2006, 2013

Atmospheric neutrinos and diffuse fluxes of cosmic neutrinos with the ANTARES telescope

A. Margiotta Dipartimento di Fisica e Astronomia Università and INFN - Bologna

MANTS meeting, 20-21 Sep 2014 - CERN

Atmospheric neutrinos and diffuse fluxes of cosmic neutrinos with the ANTARES telescope

A. Margiotta Dipartimento di Fisica e Astronomia Università and INFN - Bologna

MANTS meeting, 20-21 Sep 2014 - CERN

Adrian-Martinez et al. Eur. Phys. J. C 73, 2006, 2013

Atmospheric neutrinos and diffuse fluxes of cosmic neutrinos with the ANTARES telescope

A. Margiotta Dipartimento di Fisica e Astronomia Università and INFN - Bologna

MANTS meeting, 20-21 Sep 2014 - CERN

through-going

starting events self veto

lower energy threshold

Medium Energy Starting Events - MESE

Data Stream	Livetime (days)	Dates
Throughgoing Muon	1372.4	4/2008 - 5/2012
Starting Track	988.5	5/2010 - 5/2013

atmospheric neutrinos K short

Ks is usually neglected

K_{S} contribution to atmospheric ν_{e}

A previously neglected contribution to atmospheric electron neutrinos becomes significant for $E_v > 100 \text{ TeV}$

Tom Gaisser & Spencer Klein

- however it contributes to v_e flux > 100 TeV: needs to be accounted for

MANTS, 9/20/14

atmospheric neutrinos K short

• +<10% contribution to conventional v_e

K_{S} contribution to atmospheric ν_{e}

A previously neglected contribution to atmospheric electron neutrinos becomes significant for $E_v > 100 \text{ TeV}$

Tom Gaisser & Spencer Kleir

flux is already small in the @100 TeV: 0.96 → 1.05 3 years of HESE sample

MANTS, 9/20/14

neutrino/anti-neutrino ratio depends on energy

atmospheric neutrinos charm production in colliders

- pQCD + nuclear effects
- non-perturbative QCD & intrinsic charm

Charm at Tevatron in $p\overline{p}$ at $\sqrt{s} = 1.96$ TeV - D mesons

atmospheric neutrinos

Charm production at hadron colliders

Alessandro Grelli

Prompt D meson cross-section at mid-rapidity

JHEP 1201 (2012) 128

atmospheric neutrinos

Charm production at hadron colliders

Alessandro Grelli

Universiteit Utrecht

Prompt D meson cross-section at forward rapidity

- LHCb analyzed D⁰, D⁺, D^{*+} and D⁺_s hadronic decays in a data sample of 15nb⁻¹
- Differential cross-section dσ/dp_T analyzed in bins of pt and rapidity in the rapidity range 2.0<y<4.5
- Charm cross-section evaluated in 2.0<y<4.5 and extrapolated to the full phase-space

Nuclear Physics, Section B 871 (2013)

extrapolation to forward region FONLL

atmospheric neutrinos intrinsic charm

- proposed in 1980 to explain some observations
- virtual c-pair in nucleon: probability ~ 0.5% 3% (wide range)
- modifications of charm distribution function 1.8
- could use new functions to estimate
 - prompt neutrino contribution

27

- models tuned only to about 10%
- forward detectors are crucial for CRs & astrophysics

Tanguy Pierog, ISVHECRI 2014

High energy hadronic interaction models

bridging accelerators with cosmic ray physics

Anatoli Fedynitch KIT (IKP) & CERN

High energy hadronic interaction models bridging accelerators with cosmic ray physics

Anatoli Fedynitch KIT (IKP) & CERN

How much does LHCb phasespace contribute to integrated spectrum?

	%
LHCb	7
perturbative	37
Non-perturbative	59

 \rightarrow LHC data **not** restrictive

High energy hadronic interaction models bridging accelerators with cosmic ray physics

SIBYLL2.3_rc1 atmospheric lepton fluxes, TIG primary flux model.

ERS - R. Enberg, M. H. Reno, and I. Sarcevic, Phys. Rev. D 78, 43005 (2008).

TIG - M. Thunman, G. Ingelman, and P. Gondolo, Astroparticle Physics 5, 309 (1996).

High energy hadronic interaction models bridging accelerators with cosmic ray physics

Anatoli Fedynitch		
KIT (IKP) & CERN		

- nuclear effect are important but are uncertain
- pO, pC, pN data would be important for CRs and astrophysics

backup slides

galactic plane

2007-2011 data: n_{obs}= 177, n_{exp}= 166 0.8σ excess and 90% upper limits set for different models

Model name	Reference	Matter density	Cosmic ray flux
NoDrift_simple	Ingelman and Thunman	constant:	constant
	arXiv:hep-ph/9604286	1 nucleon / $\rm cm^3$	
NoDrift_advanced	Candia and Roulet	constant:	constant
	JCAP09(2003)005	1 nucleon / $\rm cm^3$	
Drift	Candia	Radially	Higher in GC due to
	JCAP11(2005)002	dependent	drift of CRs

Upper limits for the neutrino flux from the Galactic Plane central (178 GeV < E_{u} < 70.8 TeV)

High energy hadronic interaction models bridging accelerators with cosmic ray physics

Anatoli Fedynitch KIT (IKP) & CERN

High energy hadronic interaction models bridging accelerators with cosmic ray physics

Desired behavior of an interaction model **Requirements** describe soft and hard physics smooth transition between these two regimes extrapolation into unknown/-measured phase-space · separation between 'soft' and 'hard' not clearly defined But... pQCD minijet cross-section grows faster than ln²s small-x behavior not well known • other problems.. **PYTHIA** QGSJET **EPOS Current solution** SIBYLL DPMJET etc....

Anatoli Fedynitch KIT (IKP) & CERN

Paolo Desiati

High energy hadronic interaction models bridging accelerators with cosmic ray physics

High energy hadronic interaction models bridging accelerators with cosmic ray physics

