TG & Spencer Klein, 1409.4924

K_{S} contribution to atmospheric ν_{e}

A previously neglected contribution to atmospheric electron neutrinos becomes significant for $E_v > 100$ TeV

Calculation (accounts for knee in primary spectrum)

Branching fractions and lifetimes

Type	Mass	$\operatorname{Br}(K \to \pi e \nu)$	Lifetime	Characteristic energy	
	(MeV)	(%)	(s)	(GeV)	$m_{\kappa}c^{2}h_{0}$
K^+	493.6	5.04	1.24×10^{-8}	850	$\epsilon_{K_S} = \frac{m_K \circ m_0}{2} \approx 120 \text{ TeV}$
K_L^0	497.6	40.55	5.12×10^{-8}	210	$C\tau_S$
K_S^0	497.6	0.07	0.90×10^{-10}	120,000	
Charm	≈ 1800		$\approx 10^{-12}$	$\approx 4 \times 10^7$	

$$\frac{\phi(\nu_e \text{from} K_S)}{\phi(\nu_e \text{from} K_L)} = \frac{Br(K_S \to \pi e\nu)}{Br(K_L \to \pi e\nu)} \frac{\epsilon_{K_S}}{\epsilon_{K_L}}$$
$$= \frac{\Gamma_{SL}(K_S)/\Gamma_{Tot}(K_S)}{\Gamma_{SL}(K_L)/\Gamma_{Tot}(K_L)} \frac{(1/\tau_{K_S})}{(1/\tau_{K_L})} = 1$$

Implications (Pointed out recently by S.K.):

- Spectrum of v_e from rare Ke3 decay of K_s has spectrum harder by one power of E than v_e from K₁ until > 100 TeV
- Contribution of K_s and K_L are equal for $E_v > 120 \text{ TeV} / \cos(\theta)$

Fraction from K_s

Neutrino/anti-neutrino ratio

- Increase for neutral kaon reflects incomplete oscillations at high energy (D. Seckel)
- Increase for charged kaons because knee has less effect on the harder K⁺ spectrum

Electron neutrino background in IceCube

- Contribution to the conventional atmospheric v_e background increased by <10%
- (0.96 \rightarrow 1.05 events in three years of HESE analysis)
- This background is small in any case, perhaps comparable or smaller the prompt v_e

Summary

- Atmospheric ν_{e} from Ke3 decay of K_{S}
 - Negligible for $E_v < 100 \text{ TeV}$
 - Needs to be accounted for when $E_v > 100 \text{ TeV}$
 - $rac{
 u_e}{
 u_e + ar{
 u}_e}$ ratio depends on energy