Reconstruction Methods & Performances in Water

Jannik Hofestädt (ECAP) MANTS Meeting 20.09.2014

Outline

- Introduction
- FlavorID
- Track reconstruction:
 - method
 - performance
- Shower reconstruction:
 - method
 - performance

Introduction

Detector Layouts

- inst. volume: ~1.8 Mm^3
- height 114m, diameter 140m
- 50 strings, 20m spaced
- 20 DOM/string, 6m spaced

Proposed detector (115strings)

- inst. volume: ~3.7 Mm^3
- height 102m, diameter 214m
- 115 strings, 20m spaced
- 18 DOM/string, 6m spaced

MC Simulation

- Neutrino generation
 - GENIE
- Particle propagation & light production:
 - 'km3 + geasim' (Geant3 based)
 - 'KM3Sim' (Geant4 based)

- Optical background from ⁴⁰K decay: 5kHz / PMT and 500Hz in-DOM time-correlated
- All plots are for CC events, weighting: Bartol flux
 - track reco $\rightarrow v_{\mu}$ CC
 - shower reco \rightarrow v_e CC

FlavorID

FlavorID

- For details: see Thomas Heid's talk @ MANTS'13
- Method:
 - Calculate several feature based on track and shower hypothesis
 - Classification via Random Decision Forest
- Performance evaluated on 'premium events' (light nearly fully contained)

Track Reconstruction

Method

- For details: see Agata Trovato's talk @ MANTS'13
- Procedure:
 - hit selection based on coincidences and causality
 - track fit: maximum likelihood method based on hit time residuals similar to AAFit
 - track length estimation:
 - 1. first / last hit emission point

2. vertex fit by identifying hits from
had. shower and fit vertex hypothesis
along reconstructed track

Performance (I)

- Reference detector
- MC: 'km3 + geasim'
- Reconstructed as up-going & reco vertex inside inst. volume

- eff. volume:
 plateau ~ inst. volume
- angle(reco,nu) slightly worse than intrinsic angle (nu,mu)

Performance (II)

Reconstructed as up-going & reco vertex inside inst. volume

semi-contained: reco vertex inside inst. volume

• <u>contained</u>: estimated endpoint closer to detector centre than vertex

- Pending: adding had. Shower
 'track' reconstruction → 'track + shower' reconstruction
- Studies for proposed detector (115 strings) ongoing

Shower Reconstruction

Method

- 1. Vertex fit:
 - maximum likelihood method based on hit time residuals
 - two fits: first robust prefit then more precise fit

- 2. Energy + Bjorken y + direction fit:
 - PDF for number of expected photons depending on: E_v, Bjorken y, emission angle, OM orientation, distance(OM,vertex)

• maximum likelihood method based probability that hits have been created by certain shower hypothesis (E_v , Bjorken y, direction)

Emission Angle Profile

- PDF tables are filled from MC
- Reference direction from electron (mostly dominant particle in shower)

Event selection

- >= 3 L1-hits (coincidence within 14ns on same OM)
- two vertex fits similar:
 - dist(first_fit, second_fit) < 3m & time < 20ns
- 'coverage' cut:
 - idea: require certain minimum of expected light inside inst. volume
 - calculated from reconstructed vertex & direction
 - → direction dependent vertex cut

Effective Volume

Proposed detector (115 strings), MC: 'KM3Sim'

Plateau: 2.6–3.3 Mm³ (zenith angle dependent), for Bartol flux ~2.8 Mm³

Turn-on: 90% of plateau reach at ~6 GeV

Vertex Resolution

Direction Resolution

Energy Reconstruction

• Problem 1: PDF tables have been produced from MC with $2 < E_v < 30$

 \rightarrow reco energy in [2,30] GeV

- Problem 2: Ereco / Etrue ~ 1.5–2
- Work-around: do energy correction

corrected energy = function(reco E, reco y, reco zenith)

• Energy resolutions are only trustable in medium energy range 6-12 GeV

Energy Resolution

Comparison with PINGU Lol

Comparison with PINGU Lol

Bjorken y Sensitivity

Sensitivity to Bjorken y in nue CC events

25

Comparison 6m vs. 12m spacing

- What happens for a less dense detector?
 - masking every second OM on each string in proposed detector
 - \rightarrow same inst. volume, but 9 instead of 18 OM/string

• Effective volume: similar plateau value, less steep turn-on

Comparison 6m vs. 12m spacing

Comparison with the Past (I)

- Official sensitivity study used:
 - reference detector
 - resolutions from 'premium events' (\rightarrow optimistic assumptions)
 - effective volume of 50 string detector scaled to 115 string detector

Sensitivity study input

Comparison with the Past (II)

Summary

- Track reconstruction & FlavorID same performance as MANTS'13
- Focused on shower reconstruction in proposed detector:
 - effective volume: plateau of 2.8Mm³ reached at ~6GeV
 - energy resolution: Gaussian with σ /E=21-23% @ 9GeV
 - angular resolution: median <10° for E>9GeV
 - \rightarrow resolutions better than PINGU LoI
 - ORCA can see the electron in nue CC event
 - → Bjorken y sensitivity
- Detector optimisation study is ongoing
- Outlook:
 - 2 particle fit: electron / muon + had. shower

BACKUP

Coverage Cut

- Idea: require certain minimum of expected light inside inst. volume
- better than simple vertex cut, because allowed region of reconstructed vertices depends on reconstructed direction example: same reco vertex, but different reco direction

- calculate fraction of directions on cone around reconstructed shower with certain 'containment' in inst. volume
- 'containment' condition:
 - L_{inVol} > 20m within [10m, 70m]
 - attenuation \rightarrow <70m, 'not too close' \rightarrow >10m
- Require: Θ=45deg → f>0.75
 Θ=60deg → f>0.6
 Θ=75deg → f>0.5

Selected Reco Vertex Positions

Energy Resolution in Ereco Bins

ERLANGEN CENTRE

PHYSICS

FOR ASTROPARTICLE

Correlation: y – reco Ecorr

• Correlation: reco y ↔ recoEcorr

Premium Events

• Idea:

produce events where (nearly) all produced light is detectable \rightarrow inside inst. volume

Reference ORCA detector

Direction Resolution

Shower Energy Correction Map

Muon Neutrino Energy Resolution 🔜

Contained events

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS