Reconstruction Methods \& Performances in Water

Jannik Hofestädt (ECAP)
MANTS Meeting
20.09.2014
$+$

Outline

- Introduction
- FlavorID
- Track reconstruction:
- method
- performance
- Shower reconstruction:
- method
- performance

Introduction

Detector Layouts

Reference detector (50strings)

- inst. volume: ~1.8 $\mathrm{Mm}^{\wedge} 3$
- height 114 m , diameter 140 m
- 50 strings, 20 m spaced
- 20 DOM/string, 6 m spaced

Proposed detector (115strings)

- inst. volume: $\sim 3.7 \mathrm{Mm} \wedge 3$
- height 102 m , diameter 214 m
- 115 strings, 20 m spaced
- 18 DOM/string, 6 m spaced

MC Simulation

- Neutrino generation
- GENIE
- Particle propagation \& light production:
- 'km3 + geasim' (Geant3 based)
- 'KM3Sim' (Geant4 based)
- Optical background from ${ }^{40 \mathrm{~K}}$ decay:
$5 \mathrm{kHz} /$ PMT and 500 Hz in-DOM time-correlated
- All plots are for CC events, weighting: Bartol flux
- track reco $\rightarrow \mathrm{v}_{\mu} \mathrm{CC}$
- shower reco $\rightarrow \mathrm{v}_{\mathrm{e}} \mathrm{CC}$

FlavorID

- For details: see Thomas Heid's talk @ MANTS'13
- Method:
- Calculate several feature based on track and shower hypothesis
- Classification via Random Decision Forest
- Performance evaluated on 'premium events' (light nearly fully contained)

Track Reconstruction

- For details: see Agata Trovato's talk @ MANTS'13
- Procedure:
- hit selection based on coincidences and causality
- track fit: maximum likelihood method based on hit time residuals similar to AAFit
- track length estimation:

1. first / last hit emission point
2. vertex fit by identifying hits from had. shower and fit vertex hypothesis along reconstructed track

Performance (I)

- Reference detector
- MC: 'km3 + geasim'
- Reconstructed as up-going \& reco vertex inside inst. volume

- eff. volume: plateau ~ inst. volume
- angle(reco,nu) slightly worse than intrinsic angle (nu,mu)

Performance (II)

- Reconstructed as up-going \& reco vertex inside inst. volume

- semi-contained: reco vertex inside inst. volume
- conttaineoded: estimated endpoint closer to detector centre than vertex

Outlook

- Pending: adding had. Shower 'track' reconstruction \rightarrow 'track + shower' reconstruction
- Studies for proposed detector (115 strings) ongoing

Shower Reconstruction

- 1. Vertex fit:
- maximum likelihood method based on hit time residuals
- two fits: first robust prefit then more precise fit
- 2. Energy + Bjorken y + direction fit:
- PDF for number of expected photons depending on:
E_{v}, Bjorken y , emission angle,
 OM orientation, distance(OM,vertex)
- maximum likelihood method based probability that hits have been created by certain shower hypothesis (E_{v}, Bjorken y , direction)

Emission Angle Profile

- PDF tables are filled from MC
- Reference direction from electron (mostly dominant particle in shower)

- >= 3 L1-hits (coincidence within 14ns on same OM)
- two vertex fits similar:
- dist(first_fit, second_fit) < 3m \& time < 20ns
- 'coverage' cut:
- idea: require certain minimum of expected light inside inst. volume
- calculated from reconstructed vertex \& direction
\rightarrow direction dependent vertex cut

- Proposed detector (115 strings), MC: 'KM3Sim'

- Plateau: 2.6-3.3 Mm³ (zenith angle dependent), for Bartol flux ~2.8 Mm^{3}
- Turn-on: 90% of plateau reach at $\sim 6 \mathrm{GeV}$

- Vertex resolution 0.5-1 m (longitudinal error dominates)

- Reconstruction finds the electron in nue CC events
- Up-going better than horizontal
- Reason: multiPMT ($19 \downarrow, 12 \uparrow$)

Energy Reconstruction

- Problem 1: PDF tables have been produced from MC with $2<\mathrm{E}_{\mathrm{v}}<30$
\rightarrow reco energy in $[2,30] \mathrm{GeV}$
- Problem 2: Ereco / Etrue ~1.5-2
- Work-around: do energy correction
corrected energy = function(reco E, reco y, reco zenith)

- Energy resolutions are only trustable in medium energy range 6-12 GeV

Energy Resolution

Gaussian fits in different fit ranges

Comparison with PINGU Lol

PINGU (Lol, 2014)

ORCA

Comparison with PINGU Lol

PINGU (Lol, 2014)
ORCA

Bjorken y Sensitivity

nue CC with $6<$ true $_{\mathrm{v}} / \mathrm{GeV}<12$

- Sensitivity to Bjorken y in nue CC events

Comparison 6 m vs. 12 m spacing

- What happens for a less dense detector?
- masking every second OM on each string in proposed detector
- \rightarrow same inst. volume, but 9 instead of 18 OM/string

6 m spacing

12m spacing

- Effective volume: similar plateau value, less steep turn-on

Comparison with the Past (I)

- Official sensitivity study used:
- reference detector
- resolutions from 'premium events' (\rightarrow optimistic assumptions)
- effective volume of 50 string detector scaled to 115 string detector

Now

Sensitivity study input

Comparison with the Past (II)

Direction Resolution (premium events)

- Track reconstruction \& FlavorID same performance as MANTS'13
- Focused on shower reconstruction in proposed detector:
- effective volume: plateau of $2.8 \mathrm{Mm}^{3}$ reached at $\sim 6 \mathrm{GeV}$
- energy resolution: Gaussian with $\sigma / E=21-23 \%$ @ 9 GeV
- angular resolution: median $<10^{\circ}$ for $\mathrm{E}>9 \mathrm{GeV}$
\rightarrow resolutions better than PINGU Lol
- ORCA can see the electron in nue CC event
\rightarrow Bjorken y sensitivity
- Detector optimisation study is ongoing
- Outlook:
- 2 particle fit: electron / muon + had. shower

BACKUP

Coverage Cut

- Idea: require certain minimum of expected light inside inst. volume
- better than simple vertex cut, because allowed region of reconstructed vertices depends on reconstructed direction example: same reco vertex, but different reco direction

reco
shower
- calculate fraction of directions on cone around reconstructed shower with certain 'containment' in inst. volume
- 'containment' condition:
- $\mathrm{L}_{\text {invol }}>20 \mathrm{~m}$ within $[10 \mathrm{~m}, 70 \mathrm{~m}$]
- attenuation $\rightarrow<70 \mathrm{~m}$, 'not too close' $\rightarrow>10 \mathrm{~m}$
- Require:

$$
\begin{aligned}
& \Theta=45 \mathrm{deg} \rightarrow \mathrm{f}>0.75 \\
& \Theta=60 \mathrm{deg} \rightarrow \mathrm{f}>0.6 \\
& \Theta=75 \mathrm{deg} \rightarrow \mathrm{f}>0.5
\end{aligned}
$$

Energy Resolution in Ereco Bins

Correlation: y - reco Ecorr

- Correlation: reco y \leftrightarrow recoEcorr

Corrected Energy [GeV]

Premium Events

- Idea:
produce events where (nearly) all produced light is detectable
\rightarrow inside inst. volume
- Reference ORCA detector

Shower Energy Correction Map

Muon Neutrino Energy Resolution

Contained events

Contained events

