

The Baikal Optical Module for GVD

Vladimir Aynutdinov for Baikal collaboration MANTS-GNN, September 21, 2014

OUTLINE

1. GVD optical detector concept

2. Optical sensor and OM design

3. Electronics

4. OM reliability

Summary

GVD Optical detector concept

GVD Section

A group of Optical Modules (Section) are connected to one multi-channel ADC board, that provides data processing.

- Optical module design: as simple as possible;
- Possibility to use two modes of operation:
 - (1) Slow data transmission (triggered mode):OM coincidences produce a trigger that rejects the PMT noise.
 - (2) Fast data transmission: optical line from ADC module to Shore Center (all data to shore).

Basic mode of GVD operation – slow data transmission (10Mbit per string). Possibility to use optical line for the string under consideration. For the last version of ADC board (2014) two data output 100BASE-TX and –FX are foreseen.

Optical sensor

R7081HQE, R7081-100 Hamamatsu 10 inch. Super Bialkali photocathode $QE \approx 35\%$ @ 400nm

Spectral Response, nm	300 to 650
Effective Surface Area, cm ²	530
Number of Stages	10
Max Supply Voltage, V	2000
Quantum Efficiency at peak	0.35
Gain	107
Peak to Valley	2.8
Rise Time, ns	3.8
TTS (FWHM), ns	3.4
Dark Count, Hz	8000

Optical module design

Glass pressure sphere VETROVEX (17")

SubConn LP, 5-contacts: - PMT analog pulse (coax)

- 2-wire RS485
- 12 V power supply

OM electronics: HV converter, amplifier, controller, LEDs

Mu-metal grid

Optical module electronics

HV converter: SHV 12-2.0 K 1000 P
0 ...+ 2000 VDC, stability 0.05%
ripple and noise 8 mVpk-pk
Passive divider: 18 MΩ
2-channel amplifier: Output channel and
PMT noise monitoring channel.
2 LEDs L7113: 470 nm, 5-7 ns

regulation of intensities in the range 1...~10⁸ photons (100m Baikal water)
LED pulse delay regulation: 0 ... 1000 ns

Functional scheme of the optical module electronics

Slow control board: SiLabs C8051F121
Control of electronics operation and monitoring
of PMT parameters via RS485 interface.
Power consumption – max 0.3A×12V

ADC channel

FADC (AD9430) 12bit, 200 MSPS FPGA (Xilinx Spartan 6)

- Trigger logic: 2-level adjustable digital comparator forms low threshold *L* and high threshold *H* channel requests (section trigger is *L&H* coincidence of neighboring channels).
- Data channel (triggered) consists of double-buffered memory and data transmitter.
- Monitor channel (non-triggered) includes peak detector and amplitude analyzer.

Waveform stamp example (5 mks)

Functional scheme of one FADC channel

Monitor histogram examples

Measuring channel

- PMT nominal gain 1×10^7 ; Amplifier $k_{amp}=14$; Cable: =0.7: 10^8 in total
- PMT pulse width after cable: ~20 ns FWHM: \rightarrow A1e \approx 40 mV
- FADC: 12 bit 200 MHz; range ± 2V, waveform stamp up to 5 mks;
- Channel counting rates (0.3 PE) 15 ... 50 kHz

GVD OM - atmospheric muon detection

Statistics - 1707896 events

Selection -Q > 2 ph.el.

LED – calibration

Data consistent with expectation

dt distribution between neighboring channels

OM reliability

Results from April 2012 up to September 2014 (without stress tests of electronics during prototyping phase)

Prototype arrays: 2012: 36 OM, 2013: 72 OM, 2014: 120 OM

A summarized time of the OMs operation is ~170 years

- 3 OM failures during this period:
- 1 OM: HV control system out of operation (2013).

2 OM: not reliable connection via RS485 bus (2014).
The OM electronics failure rate ~2% / year
Repairing possibility: 8% / year for 100 strings installation (GVD Phase 1).

Conclusion

1. GVD optical module has conventional design: one PMT (R7081-100, 10", 0.35 QE), analog output.

2. Integration a group of optical modules with one multi-channel ADC module allows to build basic GVD detection unit - Section. ADC module design gives possibility to use different modes of operation: triggered mode ore transmitting all data to shore (in the case of the optical communications).

3. The Optical Modules failure rate (~2% per year) is significantly less then repairing possibility: (~8% per year).

4. GVD Optical Module design is basically finalized.

THANK YOU