THE AMY (AIR MICROWAVE YIELD) EXPERIMENT TO MEASURE THE GHZ EMISSION FROM AIR SHOWER PLASMA

Valerio Verzi* INFN ROMA Tor Vergata

* for the AMY Collaboration

Annapolis (USA), 9-12 June

ENERGY SPECTRUM x E^{2.5}

Observations of microwave continuum emissionP.W. Gorham et al.from air shower plasma (SLAC)Physical Review D 78, 032007 (2008)

AMY EXPERIMENT

Beam Test Facility (BTF) AT DAΦNE

INFN Frascati National Laboratories

beam	e⁻
energy range	510 MeV
repetition rate	few Hz
pulse duration	1.5 3 and 10 ns
max particle/bunch	10 ¹⁰

BTF
$$10^{10} \frac{e^{-1}}{\text{bunch}} \times 510 \text{ MeV} \approx 5 \times 10^{18} \text{eV}$$
 repetition
rate
few Hz
SLAC $2 \times 10^7 \frac{e^{-1}}{\text{bunch}} \times 28 \text{ GeV} \approx 3 \times 10^{17} \text{eV}$

Observations of microwave continuum emission from air shower plasma Physical Review D **78**, 032007 (2008)

AMY COLLABORATION

J. ALVAREZ-MUÑIZ¹, M. BLANCO², M. BOHÁČOVÁ^{3,*}, B. BUONOMO⁴, G. CATALDI⁵, M. R. COLUCCIA^{5,6}, P. CRETI⁵, I. DE MITRI^{5,6}, C. DI GIULIO⁷, P. FACAL SAN LUIS⁸, L. FOGGETTA⁴, R. GAÏOR², D. GARCIA-FERNANDEZ¹, M. IARLORI⁹, S. LE COZ¹⁰, A. LETESSIER-SELVON², K. LOUEDEC¹⁰, I. C. MARIŞ², D. MARTELLO^{5,6}, G. MAZZITELLI⁴, M. MONASOR⁸, L. PERRONE^{5,6}, R. PESCE¹¹, S. PETRERA⁹, P. PRIVITERA⁸, V. RIZI⁹, G. RODRIGUEZ FERNANDEZ⁷, F. SALAMIDA¹², G. SALINA⁷, M. SETTIMO^{13,2}, P. VALENTE⁴, J. R. VAZQUEZ¹⁴, V. VERZI⁷, C. WILLIAMS⁸

¹ Depto. de Fisica de Particulas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain

² Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France

³ Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

⁴ Istituto Nazionale di Fisica Nucleare - Laboratori Naziona li di Frascati, Via E. Fermi, 40 - 00044 Frascati, Italy

⁵ Sezione INFN, Lecce, Italy

⁶ Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento, Lecce, Italy

⁷ Sezione INFN, Roma Tor Vergata, Italy

⁸ University of Chicago, Enrico Fermi Institute Kavli Institute for Cosmological Physics, Chicago, USA

⁹ Dipartimento di Fisica, Università dell'Aquila and sezione INFN, l'Aquila, Italy

¹⁰ Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université J. Fourier Grenoble, CNRS-IN2P3, Grenoble, France

¹¹ Dipartimento di Fisica dell'Universit and INFN, Genova, Italy

¹² Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris 11, CNRS-IN2P3, France

¹³ Universität Siegen, Germany

¹⁴ Universidad Complutense de Madrid, Madrid, Spain

ANECHOIC FARADAY CHAMBER

Three modules (Tor Vergata university)

SATIMO AEP 12 attenuation ^{30 cm} 1GHz: 30 dB > 6 GHz: 50 dB

Horn RF Spin DRH20 1.7 - 20 GHz Gain: from 6 to 16 dBi

> Log Periodic Rohde&Schwarz HL050 0.25 - 26.5 GHz Gain: ~ 8.5 dBi

- support external to chamber
- rotation of polarization plane

SETUP AT THE TEST BEAM

SETUP AT THE TEST BEAM

$$Al_2O_3$$
 $X_0 \approx 7.5$ cm

6 modules remotely controlled with compressed air system

SIGNAL DEFINITION

For each bunch

- trigger from LINAC
- acquire beam and antenna signals with the oscilloscope ($\Delta t = 25 \text{ ps}$)

BUNCH LENGTH

three test beams

short bunch length reveals a particular signal time structure

CROSS/CO POLARIZATION

Cherenkov background reduced with dipoles perpendicular to beam axis

INTERPRETATION ?

Second peak seems not generated by reflections

- in the chamber
- cables
- amplifier

••••

big reflections *only* with a metal plate centred at the end of the chamber

without reflector

POWER vs BEAM INTENSITY

FREQUENCY SPECTRUM

FFT of oscilloscope traces (average over many triggers)

main line at $f_{LINAC} = 2.85 \text{ GHz}$

for small thickness of the target (higher signals) harmonics at multiples of $\mathbf{f}_{\text{LINAC}}$ 17

SIGNAL vs TARGET TICKNESS

SIGNAL vs TARGET TICKNESS

CROSS-POL SIGNAL WITH 4.7 X₀

strong coherence induced by the LINAC even with maximum target thickness

- If MBR, in atmospheric showers the yield should be lower
- Density flux (W/m²/Hz) ?

CROSS-POL SIGNAL WITH 4.7 X₀

CROSS-POL SIGNAL WITH 4.7 X₀

$$P_{meas} \approx 10 \text{ nW}$$

 $I_{meas} \sim 5 \cdot 10^{-17} \frac{\text{W}}{\text{m}^2 \text{Hz}}$

 $I_{meas} < 4 \ 10^{-16} \text{ W/m}^2/\text{Hz}$ Physical Review D **78**, 032007 (2008)

$$I_{meas} \approx \frac{P_{meas}}{\Delta v \ A_e(v_L) \ C(v_l)}$$

 $v_L = 2.86 GHz$ $\Delta v \sim 0.5 GHz$

OUTLOOK

- AMY: three successful tests at the BTF
- not clear interpretation of the cross-pol signal Cherenkov, MBR, ..?
- strong coherence induced by the LINAC
 → if MBR, in atmospheric showers the yield should be lower
- density flux (at 4.7 X_0) ~ 5 x 10⁻¹⁷ W/m²/Hz
- other test beam in Dec 2014: increase the sensitivity between LINAC peaks
 (hardware in narrower bands → 60 db amplifiers)

END

Observations of microwave continuum emission from air shower plasma (SLAC)

P.W. Gorham et al. Physical Review D 78, 032007 (2008)

POWER vs BEAM INTENSITY

POWER vs BEAM INTENSITY

OSCILLOSCOPE SENSITIVITY

