Signal search and comparison with expectations

Measurements with the absolute calibrated L-band radio antenna of CROME for extensive air showers

Philipp Papenbreer

University of Wuppertal

11.6.2014

CROME-collaboration

Bundesministerium für Bilduna und Forschung

Philipp Papenbreer (University of Wuppertal)

ARENA 2014

11.6.2014 1 / 17 Experimental setup ooo Calibration oooo Signal search and comparison with expectations ooooo

- Molecular Bremsstrahlung
 - 2008: Gorham et al. experiment at SLAC
 - \rightarrow shower electrons produce $\mbox{Bremsstrahlung}$ at GHz frequencies
 - Measured power $\propto E_{\rm primary}$ or $\propto E_{\rm primary}^2$
 - Isotrop und unpolarized signal
 - Is this an additional channel to measure air showers?

Signal search and comparison with expectations ${\scriptstyle 000000}$

CROME

Cosmic Ray Observation via Microwave Emission

- Aim: Measurement of air showers using radio antennas
- 5 radio antennas (1.1 11 GHz)
- Triggered and shower informationen by KASCADE-Grande

Signal search and comparison with expectations ${\scriptstyle 000000}$

KASCADE-Grande

Specifications

- Air shower detector at KIT (Karlsruhe)
- $700 \times 700 \text{ m}^2$ Detector area with 37 detector stations
- Plastic scintillators and photomultiplier
- Energy range up to 10^{18} eV

4 / 17

Signal search and comparison with expectations ${\scriptstyle 000000}$

L-band antenna

Blueprint

Antenna dish

Specifications

- 1.1 1.7 GHz energy range
- Frequency range limited by filters
- Logarithmic power detector (PD)
 - 4 ns-integration time /250 MHz sampling

Experimental	setup
0000	

Signal search and comparison with expectations $_{\rm OOOOOO}$

Data traces

- Data traces of 1 ms length centered around trigger signal
- PD: Signals are negative peaks below noise level

Experimental setup 0000 Calibration 00000 Signal search and comparison with expectations $_{\rm OOOOOO}$

Calibration using an octocopter

Measurements in good cooperation with KIT!

- Aim: Calculation of measured power/field strength from ADC values
- Absolute calibration using an octocopter with GPS-sender and sending antenna mounted

Experimental	setup

Signal search and comparison with expectations ${\scriptstyle 000000}$

First results

• First results already show a directivity with a distinct mainlobe!

Friis-Equation

- Friis-Equation describes measured signal strength $P_R = P_T + G_T + 20 \cdot \log_{10} \left(\frac{\lambda}{4\pi d}\right) + G_R$ depending from
 - oscillator power and gain of sending antenna (calibration measurement is known)
 - free-space path loss
 - Directional gain of receiver system (wanted!)

ELE SQC

E + 4 E +

Experimental	setup

Signal search and comparison with expectations $_{\rm OOOOO}$

Antenna simulation

• Modeling for directivity of receiver system:

 \rightarrow Simulation using GRASP

I= nan

• Main lobe azimuth = $34,34^{\circ} \pm 0,51^{\circ}_{stat}$, zenith = $1,95^{\circ} \pm 0,02^{\circ}_{stat}$

- Gain = $(26,45 \pm 0,03_{stat} \pm 3,79_{syst}) \text{ dB}$
- Result of gain matches measurement of gain (\approx 27.5 dB) from electronics

^aDirection of main lobe: additional systematic uncertainty of 0.83° due to octocopter position

Signal search and comparison with expectations

Experimental setup	Calibration	Signal search and comparison with expectation
0000	000000	0●0000
Approach		

- Select showers
- Reconstruction (clean traces & calibration)
- Read-out time information from trigger signals
- Time synchronization to shower arrival time (No candidate found)
- Stacked analysis by overlaying traces with appropriate delay (again: no significant detection)

Experimental setup 0000

Calibration

Signal search and comparison with expectations ${\rm oo}{\rm o}{\rm o}{\rm o}{\rm o}$

Comparison with MBR

- MBR predicts flux density $I_{\rm f,exp,Gorham} = 2.77 \cdot 10^{-24} \frac{W}{m^2 \text{Hz}}$ for a shower with $E = 3.36 \cdot 10^{17} \text{ eV}$ of
- Scaled to the energies and distances of measured air showers
- Energy scaling could be linear or quadratical
- Results are compared to measured noise level

 Experimental setup
 Calibration
 Signal search and comparison with expectations

 Comparison with CoREAS simulations

Approach

- Simulation of radio signals from measured air showers
- Get full bandwidth trace from CoREAS with a sampling of 10 GHz
- Multiply window function on FFT to limit frequency range to L-Band
- Apply a peak search on traces

Experimental	setup

Signal search and comparison with expectations 00000

Data Sample

Approach

- Use showers with calibrated antenna setup,
 - $E \geq$ 7.3 EeV, core distance \leq 200 m and use Kascade-Grande quality cuts
- Strong signals for showers propagating to south

Experimental	setup

Signal search and comparison with expectations $\texttt{00000}\bullet$

Data Sample

Approach

- Searched traces of highest expected field strengths
- ullet \to No signal candidates found

- **Receiver system** to measure air showers using a radio signal in the GHz range
- Absolute calibration of receiver system
- Search for signals
- Comparison with MBR and CoREAS expectations
 - \rightarrow more amplification/measurement time needed

Thanks for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

Backup

Comparison with CoREAS simulation

- Simulate measured air showers using CoREAS and small integration steps (0.1 ns)
- Calculate FFT and limit frequency range to L-Band using Hanning-window
- Get L-band signal with backwards transformation
- Comparison of results with data are in progress

A sample of traces..

KG trigger

S19 trigger

Image: A matrix

э.

三日 のへの

Comparison of calibration results to expectations

• calibration result:

$$extbf{gain} = (26,\!45\pm0,\!03_{ extbf{stat}}\pm3,\!79_{ extbf{syst}}) extbf{ dB}$$

• comparison to frequency response characteristic of data chain possible

Frequenzgang der Signalkette mit altem LNA

running RMS of candidate traces

calibration of power detector

Philipp Papenbreer (University of Wuppertal)

11.6.2014 22 / 17

= 990