Characterisation of the radio signal emission using the SELFAS code

Karim Louédec LPSC CNRS/IN2P3-INSU-INSIS UGA INP Université de Grenoble

Basics

SELFAS computes the electric field emitted by the secondary e^+/e^- in EAS,

- in a large frequency band (kHz-GHz)
- no full shower simulation needed: based on shower universality concept
 - Longitudinal profile from GIL or CONEX
 - Energy distribution
 - Vertical and horizontal momentum direction
 - lateral distribution
 - Delay time (shower front thickness)
- track all e⁺/e⁻ along their trajectory and sum up all individual contributions to the observer's location

Frequency	~ I MHz	20-200 MHz
Year	2012	2008-2009

Formalism

For a single particle of charge q and a finite lifetime

Charge density

Current density

Maxwell equation in Lorentz gauge:

$$\vec{E}(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \int \mathrm{d}^3 x' \mathrm{d}^3 t' \frac{1}{R} \left(-\nabla' \rho - \frac{1}{\alpha} \right)$$

$$\vec{E}(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q\,\vec{n}}{R^2(1-\eta\vec{\beta}\cdot\vec{n})} + \frac{1}{c}\,\frac{\partial}{\partial t}\frac{q\,\vec{n}}{R(1-\eta\vec{\beta}\cdot\vec{n})} - \frac{1}{c}\,\frac{\partial}{\partial t}\frac{q\,\vec{\beta}}{R(1-\eta\vec{\beta}\cdot\vec{n})} \right)_{\rm ret}$$

 $\boldsymbol{J}(\boldsymbol{x}',t') = \rho(\boldsymbol{x}',t')\boldsymbol{v}(t')$

 $\frac{1}{c^2}\frac{\partial J}{\partial t'}\bigg)_{\rm rot}\,\delta\left(t'-\left(t-\frac{|x-x'|}{c/\eta}\right)\right)$

Input : shower + site configuration + antennas location + number of particles

Input : shower + site configuration

+ antennas location + number of particles

Generation of the longitudinal profile

Following GIL parameterization (Greisen-Iljina-Linsley)

or

Using CONEX 2r4.37 (QGSJET-II.04, EPOS — ...)

Input : shower + site configuration

+ antennas location + number of particles

Generation of the longitudinal profile Following GIL parameterization (Greisen-Iljina-Linsley)

or

Using CONEX 2r4.37 (QGSJET-II.04, EPOS — ...)

Particle n : random depth X following the longitudinal profile

Initial

conditions

Lafèbre et al Astropart. Phys., 31(3):243, 2009

- ► Energy distribution
- ► Angular distribution
- ► Lateral distribution
- ► Delay time distribution

Air refractive index refractive index η_i considered at the Bepends on the altitude $\overline{\rho_{air}}(\eta_i)$ $m_{Ha} = 1000292$

Input : shower + site configuration

+ antennas location + number of particles

Generation of the longitudinal profile Following GIL parameterization (Greisen-Iljina-Linsley)

or

Using CONEX 2r4.37 (QGSJET-II.04, EPOS — ...)

Particle n : random depth X following the longitudinal profile

Initial

conditions

Lafèbre et al Astropart. Phys., 31(3):243, 2009

- ► Energy distribution
- ► Angular distribution
- ► Lateral distribution
- ► Delay time distribution

Compute field every 0.3 g/cm² along particle trajectory

Air refractive index refractive index η_i considered at the depends on the altitude $\overline{\rho_{air}}(\eta_i)$ $n_{h} = 1000292$

Input : shower + site configuration + antennas location + number of particles

Generation of the longitudinal profile Following GIL parameterization (Greisen-Iljina-Linsley)

Using CONEX 2r4.37 (QGSJET-II.04, EPOS — ...)

Air refractive index refractive index η_i considered at the depends on the altitude $\overline{\rho_{air}} h$ $m_{h} = 1000292$

 $\vec{E}(\vec{x},t) = \frac{1}{4\pi\varepsilon_0} \left(\sum_{i=1}^N \frac{q_i \vec{n}_i}{R_i^2 (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)} \right)$ contribution $+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)}$ Charse excess contribution $-\frac{1}{c}\frac{\partial}{\partial t}\sum_{i=1}^{N}\frac{q_{i}\vec{\beta}_{i}}{R_{i}(1-\eta\vec{\beta}_{i}\cdot\vec{n}_{i})}\right)$ Transverse current contribution ARENA 2014, Annapolis

B. Revenu

dominant contribution!

 $+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)}$

Comparison with single events

(LOFAR plots by S. Buitink)

Up to some GHz

EW: Along East axis / n

extend the mechanisms observed in the MHz domain to the GHz domain take into account the effect of a realistic refractive index

GHz

extend the mechanisms observed in the MHz domain to the GHz domain take into account the effect of a realistic refractive index

Down to some kHz

Predicted mechanisms:

contribution of the usual geomagnetic and charge excess contributions during the shower development in the air

> ╋ the transition radiation when the shower front hits the ground +

[Revenu ICRC2013, Rio]

$$\vec{E}(\vec{x},t) = \frac{1}{4\pi\varepsilon_0 c} \frac{\partial}{\partial t} \sum_{i=1}^N q_i \left(\frac{\vec{\beta}_i - (\vec{n}_i \cdot \vec{\beta}_i) \vec{n}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)} \right)_{\text{ret}}$$

New contribution below 20 MHz, vertical polarization, **monopolar** pulse with amplitude decreasing with $1/d_{core}$ (as already observed in the past by AGASA, Gauhati group, EAS-radio...)

+ sudden death the coherent Bremsstrahlung of e^+/e^- when they reach the ground level $\begin{pmatrix} \\ \\ \\ \end{pmatrix}$ of the shower

(Coulomb gauge)

Down to some kHz

Down to some kHz

ground contribution development in the air

Down to some kHz

B. Revenu

ground contribution development in the air

Down to some kHz

B. Revenu

Conclusion

- SELFAS is a simple code, easy to use and fast: good for extensive use event by event
- it describes well the data (RAuger, CODALEMA, AERA, LOFAR...) in the range 20-200 MHz • CONEX is used to generate the longitudinal profile
- the radio emission is now well understood
- at lower frequencies, a new phenomenon appears: the electric field emission by the shower sudden death when reaching the ground EXTASIS is a dedicated experiment in Nançay, inside CODALEMA, under progress