" New developments around the butterfly antenna"

New developments around the butterfly antenna

Butterfly Antenna presented 4 years ago

- ARENA 2010, Nantes
- Proceeding: 'Antenna development for astroparticle and radioastronomy experiments', D. Charrier, Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.10.141

Since that time ...

- Antenna radiating elements are electrically the same (bow tie type antenna)
- development of more accurate models
- development of a new LNA (LONAMOS) to improve the Butterfly characteristics

•

Butterfly historic

October 2008: birth of the Butterfly antenna, original version (6)

- Single polarisation
- Antenna radiator made of electric wire and plastic tube frame
- Use the 'CODALAMP' LNA designed in 2004 at Subatech
- two antennas were installed in the CODALEMA acquisition

2009: first upgrade of the Butterfly

- dual polarization antenna
- Antenna radiator element made of rigid aluminium rod
- ---> equip CODALEMA extension

November 2011: birth of the 'LONAMOS' LNA (3)

- Analog CMOS ASIC designed at Subatech
- better characteristics than CODALAMP LNA
- Production of ~800 circuits

2011-2012: second upgrade of the Butterfly

- Design of a mechanic upgrade(wind stabilization) by RWTH Aachen University, III. Physikalisches Institut A, Aachen
- ---> equip AERA II and III
- **2013** : third upgrade of the Butterfly
 - CODALAMP is replaced by LONAMOS
 - The LNA of the 60 antenna of CODALEMA are substituted

Butterfly, original version

Butterfly, upgrade 1

Butterfly, upgrade 2

(2)

	Antenna radiating element	LNA	Target
Bandwith	Х	Х	~
∆Group delay	Х	Х	2
Sensitivity	Х	Х	7
Linearity		Х	~
Isotropy	Х		7

==> the LNA is <u>as important as</u> the Antenna radiating element for the overall active antenna characteristics

The Butterfly radiating element

The butterfly radiating element is a bow-tie dipole

 Trade off between a low Q factor - low group delay variation and mechanical complexity

The half perimeter length is ~1.6 m

- resonance frequency around 45MHz to maximize S/N in [20-80]MHz
- The height is ~1.5m
 - Trade off between low frequency antenna efficiency and high frequency isotropy

Noise sources

- LNA noise
- Antenna losses
- Galactic noise temperature
- Signal
 - Ultra high energy cosmic ray (UHECR)
- For the Butterfly antenna we chose to be galactic noise dominated in [20-80]MHz even if it is not critical for UHECR radio detection
 - the galactic noise can be used at least as a test source to check the antenna
 - galactic noise may be used to calibrate the antenna
- We will consider the galactic noise as a signal to qualify the Butterfly sensitivity

Intrinsic signal to Noise ratio of the Butterfly antenna

- The Antenna radiator element as an intrinsic signal to noise ratio
- It limits the overall S/N (seen from the LNA output)
- It depends on the antenna geometry, the antenna heigh and the ground electric parameters ε and σ
- Antenna S/N is decreasing with frequency due to Tgal decrease and is lower than 10dB above ~100MHz ('average' ground)

Rothe & Dahlke noise model of the LNA

4 parameters are required to fully model the noise of a 2-port network

- Vn and In are uncorrelated noise sources
- The correlation is model by Zcor=Rcor + jXcor at 0°K
- the correlation impedance as no effect on the signal: Zcor+(-Zcor)=0 !

Parameters were extracted from simulation on the LONAMOS LNA and cross checked with measurements using reference source impedances: error < 3%

ARENA 2014, June 9 – 12, Didier Charrier,

Calculating Signal to noise ratio from the full noise model

From the full noise model, we calculate the total S/N at the LNA output

- The Butterfly antenna is active: LNA placed at the antenna feedpoint
 - ==> power matching is not required
 - ==> noise matching becomes possible
- 1st solution: adjusting the LNA parameters (rn, gn and Zcor)
 - minimizing gn ...
 - cancelling Xant by Xcor

ARENA 2014, June 9 – 12, Didier Charrier,

Towards noise matching

- ^{2nd} solution: adjusting the antenna parameters (Rrad, Xant and η)
 - we calculate the optimum Rrad and Xant that maximize the S/N for a given LNA configuration and a given antenna efficiency
 - We need to decrease the Antenna reactance and radiation resistance variation
 - ==> FAT dipole

Towards noise matching

3rd solution: adding a noise matching array between the antenna and the LNA

- noiseless passive components (transformer, inductance, capacitance)
- The inductance L connected at the LNA input has 2 purpose
 - filtering low frequencies RFI
 - enhance the low frequencies noise matching
- ==> noise matching becomes much better in the 15-40MHz band !
- but, additional matching array may increase the group delay variation

Signal to Noise ratio of the Butterfly antenna

S/N of the Butterfly-LONAMOS is more than 10dB in ~[40-72]MHz
The bandwidth is increased to ~[22-75]MH with a noise matching inductance

Equivalent noise temperature of the LONAMOS-BUTTERFLY

- The equivalent noise temperature of the LNA and the Butterfly losses with the Butterfly impedance as source is less than 200K

Noise measurement versus simulation on the galaxy level

Measurement performed December, 17 2013 at 5H21UTC, minimum galactic

ARENA 2014, June 9 – 12, Didier Charrier,

The LONAMOS LNA

the LONAMOS layout

- Fully differential architecture
 - reject even order harmonic products
 - reject common noises
 - no input BALUN required
- Adjustable input impedance
- ARENA 2014, June 9 12, Didier Charrier,

- ASIC (Application Specific Integrated Circuit) designed in 2011 to substitute to the CODALAMP with an up to date technology
- Main goal:
 - Increase the linearity characteristics
 - Decrease the temperature drift and gain uncertainty
- Use the unexpensive AMS CMOS 0.35µ technology
- Area: 1400µ x 1400µ

LONAMOS measurements, OCP, OIP3, NF

Output 3rd order intercept point measurement

frequency

(MHz)

0.45

٦)

LNA measurements, Scattering parameters

ARENA 2014, June 9 – 12, Didier Charrier,

Uncertainty measurements

LONAMOS histogram, N=160

|S11| @ 50MHz

group delay (S21) @ 50MHz

@50MHz	LONAMOS	CODALAMP
S11 , dB	μ=-3.84	μ=-2.6
mdB	σ=26	σ=71
S21 , dB	μ=24.27	μ=30
mdB	σ=67	σ=227
GD(S21), ns	μ=5.47	μ=
ps	σ=54	σ=

CODALAMP histogram, N=146

|S21| @ 50MHz

LNA characteristics, summary and comparison

	CODALAMP	LONAMOS
OIP3, dBm	14	33
OCP(-1dB), dBm	0	15
Gp, dB	33	27
IIP3, dBm	-19	6
IIP3, Volt	0.063	1.1
NF(matched), dB		0.8
NFoptimal, dB		0.7
NF (50Ω), dB	~3.5	2.7
Band, MHz	>200	>200
Sdev(Gain), dB	0.23	0.07
Sdev(GD(Gain)),ps		50
T° drift, mdB/°C	-26	-4
consumption, mW	310	340

The LONAMOS LNA boards

The CODALEMA-LONAMOS LNA board: equip Butterfly antennas

The NenuFAR-LONAMOS LNA board: equip LWA antennas

19

ARENA 2014, June 9 – 12, Didier Charrier,

The LONAMOS chip: ~800 circuits were produced

Antenna isotropy in the time domain

Antenna are often characterized in the frequency domain by |G|

But We need the phase to work in the time domain !

==> we use the vector equivalent length H_{bfy} calculated as the product of

- The antenna vector effective height...
- ...by the transfer function from the antenna terminal point to the LNA output

$$\vec{H}_{(\theta,\phi,f)}^{bfy} = j \frac{2c}{\eta I_t f} \vec{E}_{(\theta,\phi,r,f)} r e^{\frac{j2\pi fr}{c}} \frac{S_{21}}{\frac{Z_{ant}}{Z_{ref}} (1 - S_{11}) + (1 + S_{11})}$$

with Zref the reference impedance, η =377 Ω , It is the current value used for the transmitting mode simulation, E the vector simulated electric field simulated with NEC

The vector equivalent length is calculated along the theta and phi direction of a spherical coordinate system

The vector equivalent length knowledge is necessary to unfold the antenna response and calculate the received electric field in time or frequency domain

Butterfly response to a Dirac pulse

ARENA 2014, June 9 – 12, Didier Charrier,

Time domain 'isotropy pattern'

We calculate a time domain pattern max(|VI(t)|) as a fonction of θ , ϕ and the bandwidth

ARENA 2014, June 9 – 12, Didier Charrier,

Conclusion and outlook

The Butterfly antenna is used by many experiments

- CODALEMA, Nançay, France: 60 antennas
- AERA, Malargüe, Argentina: 100 antennas
- HELYCON, Greece: 6 antennas
- TREND, Ulastaï, China: 54 antennas

The LONAMOS LNA improves characteristics

- Linearity
- Gain uncertainty
- Temperature drift
- Sensitivity

The LONAMOS gives good results with the LWA antenna on

- COMPACT ARRAY, Nançay, France: 10 antennas
- NenuFAR, Nançay, France: ~57 antennas (~2000 antennas foreseen)
- A three polarization 'Butterfly like' antenna is under study

Thank you for your attention