Testing a two-component approach to describe radio emission from air showers J. Alvarez-Muñiz, W.R. Carvalho Jr, H. Schoorlemmer, E. Zas Univ. Santiago de Compostela, Spain Univ. of Hawaii, USA

[based on Astroparticle Physics 59, 29 (2014)]

ARENA 2014, 7-12 June 2014, Annapolis (USA)

The "two-component" approach

Recall: total field is not radially symmetric but...

... individual components should be symmetric.

Testing the "two-component"

Methodology:

1. Obtain (MC sims.) separate amplitudes of Askaryan & geomagnetic fields along a single line of antennas with coordinates (R, Φ_0)

$$\mathcal{E}_{Ask}(R,\Phi_0) = |\vec{E}_{Ask}(R,\Phi_0)| = |\vec{E}_{B_{off}}(R,\Phi_0)|$$

Askaryan: shower with B off

$$\mathcal{E}_{\text{geo}}(R, \Phi_0) = |\vec{E}_{\text{geo}}(R, \Phi_0)| = |\vec{E}_{B_{\text{on}}}(R, \Phi_0) - \vec{E}_{B_{\text{off}}}(R, \Phi_0)$$

Geomagnetic: shower B on – B off

Assuming circular symmetry in shower plane & expected polarization
→ obtain field at any other position:

3. Simple geometric projection from (r, Φ) in shower plane onto ground.

Circular symmetry of E_{geo} & E_{Ask}

Results:

Field predicted with the model

Field predicted by model vs field in full MC sims.

Solid lines \rightarrow model Dashed \rightarrow ZHAireS Monte Carlo

Predicted field vs field in MC sims.

E = 10^{17} eV, Arriving from North LOFAR site , $sin\alpha_B \approx 0.92$

Input: |E_{geo}|&|E_{Ask}|at positions along East

Output: Field components along S-N, W-E

Model predictions vs MC simulations

Inaccuracies of model: early-late effect

- Model assumes circular symmetry in shower plane
- But... Early-Late effects (not accounted for in model) arise when projecting onto ground:
 - Early part of shower (hitting ground first) is closer to observer than late part
- Model predicts slightly different field than full Monte Carlo simulations
 - ~ 5 % effect at θ = 70 deg.
 - increases with θ

Inaccuracies: cancellation of fields

Model less accurate at observer positions & shower geometries where Askaryan & geomagnetic contributions almost cancel each other.

- Model predicts almost perfect cancellation of E_{Ask} & E_{geo} East of core at Cherenkov ring:
 - polarizations are assumed to be perfectly parallel to each other along EW line.
- This is not exactly the case in full MC sims.

Conclusions

- Quantitatively tested the Askaryan + geomagnetic approach to radio emission in air showers:
 - Methodology:
 - Obtain separate $|E_{Ask}| \& |E_{geo}|$ along 1 line of antennas in MC sims.
 - Standard assumptions to predict fields at any position on ground.
 - Works at few % level for practically all shower geometries & observer positions & on a shower-by-shower basis.
- Fast & accurate calculation of E-fields with many Applications:
 - Massive production of electric field patterns on ground for studies of:
 - shower-to-shower fluctuations,
 - dependence on mass composition,
 - dependence on hadronic models,...
 - Facilitates the creation of field parameterisations (E, θ , X_{max},...)
 - Alternative to interpolation methods used in reconstructions.
- Limitation: only applicable to observables not dependent on time

Backup slides

Observable: Hilbert envelope

Raw $E(t) \rightarrow$ Filtered (30 - 80 MHz) $E(t) \rightarrow$ Hilbert envel. $H(t) \rightarrow |H(t)| \rightarrow max|H(t)|$

"Robustness" against input line

Example of fastness of model:

