

Radio Wavefront of Air Showers

Frank G. Schröder for the LOPES Collaboration

Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Shape of radio wavefront

Radio emission generated during shower development

Radio wavefront ≠ particle front

Shape of radio wavefront?

- Sphere → static point source → no!
- Cone (approximately for d > 50 m)
- Hyperbola

Correlation with shower parameters

Sensitivity to shower maximum

LOPES history

LOPES = radio extension of KASCADE particle array

- trigger and air-shower reconstruction for comparison
- LOPES started in 2003 as LOFAR prototype station
 - stopped in 2013, but analysis still continues
- Data will be made available publicly
 - KASCACE Cosmic Ray Data Center (KCDC): <u>https://kcdc.ikp.kit.edu/</u>

KASCADE before LOPES successful common history KASCADE

after LOPES

Setup for Wavefront Analysis

- East-west aligned dipole antennas: 43-74 MHz
- **316** measured LOPES events: $E > 10^{17} \text{ eV}, \theta < 45^{\circ}$
- 1 proton + 1 iron CoREAS simulation for each event

Example event: LOPES and CoREAS

Large measurement uncertainties \rightarrow Use different method for measurements!

Beamforming

- Digitally shift all traces in time by distance to wavefront / c
 - 3-dimensional problem
- depends on
 - wavefront shape
 - shower axis
 - relative time (1 ns precise)
- but not on
 - absolute time (t = 0)

Digital radio interferometry

After beamformig, cross-correlation for pulse identification
only air shower radio pulse is correlated in all antennas

Comparison of wavefront shapes

Clear evidence for hyperbola with sims

Number of events with smallest χ^2 for certain wavefront fit

Offset parameter b

12 09 June 2014, ARENA, Annapolis

LOPES: Radio Wavefront

frank.schroeder@kit.edu Institut für Kernphysik, KIT Campus North

Cone angle ρ

13 09 June 2014, ARENA, Annapolis

LOPES: Radio Wavefront

frank.schroeder@kit.edu Institut für Kernphysik, KIT Campus North

Measured correlation with shower age

Correlation with X_{max} in simulations

Correlation with zenith angle

16 09 June 2014, ARENA, Annapolis

LOPES: Radio Wavefront

frank.schroeder@kit.edu Institut für Kernphysik, KIT Campus North

Reconstructed X_{max}

Conclusion

Shape of radio wavefront

Hyperbola

- Cone: good approximation at large distances (d > 50 m)
- Sphere, i.e., point source at shower maximum: poor approximation

Practical applicability

- Reconstruction of shower geometry
- Discrimination between air showers and disturbances
- X_{max}: also in combination with independent lateral-slope method
 - \rightarrow Composition of primary cosmic rays

LOPES Collaboration

Kernphysik, KIT, Germany			
J.C. Arteaga	V. De Souza		
B. Fuchs	D. Huber		
D. Kang	K. Link		
M. Ludwig	M. Melissas		
N. Palmieri			
Max-Planck-Institut für Radio-			
astronomie. Bonn. Germanv			

P.L. Biermann

J.A. Zensus

A. Horneffer

Osservatorio Astrofisico di Torino,

INAF Torino, Italy

E. Cantoni

G.C. Trinchero

C. Morello

A. Chiavassa

National Centre for Nuclear

Research, Lodz, Poland J. Zabierowski

P. Łuczak

Dipartimento di Fisica

dell' Università Torino, Italy

M. Bertaina

F. Di Pierro

National Inst of Physics and Nuclear		
Engineering Bucharest, Romania		
I.M. Brancus	A. Saftoiu	
O. Sima	G. Toma	

http://www.lopes-project.org/

<u>Germany</u>	
W.D. Apel	K. Bekk
J. Blümer	H. Bozdog
K. Daumiller	P. Doll
R. Engel	A. Haungs
D. Heck	T. Huege
P.G. Isar	H.J. Mathes
J. Oehlschläger	T. Pierog
H. Rebel	M. Roth
H. Schieler	F.G. Schröder
A. Weindl	J. Wochele

Institut Prozessdatenverarbeitung

und Elektron	<u>ik, KIT, Germany</u>
H. Gemmeke	O. Krömer
Ch. Rühle	A. Schmidt

1	A

Schmidt

ASTRON, The	Netherlands
H. Butcher	G.W. Kant
W. van Capellen	S. Wijnholds

<u>Universität</u>	Wuppertal,

Germany D. Fuhrmann

J. Rautenberg

K.H. Kampert

Universität Siegen,

Germany

C. Grupen

LOPES: Radio Wavefront

Experimental indications for hyperbola

Simulation: true vs. reconstructed X_{max}

LOPES technical data

Frequency range

- 40-80 MHz
- 80 MHz ADC sampling (2nd Nyquist domain)
- Trace length: 0.8 ms
 - Radio pulse: ~ 0.1 µs
 - →Frequency resolution for noise reduction
- Digital interferometer
 - relative position accuracy of 5 cm (differential GPS)
 - relative timing accuracy of ~ 1ns

LOPES: Radio Wavefront

